-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathlsf.pas
286 lines (246 loc) · 8.55 KB
/
lsf.pas
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
{
publish with BSD Licence.
Copyright (c) Terry Lao
}
unit lsf;
{$MODE Delphi}
interface
uses iLBC_define,C2Delphi_header;
{----------------------------------------------------------------*
* conversion from lpc coefficients to lsf coefficients
*---------------------------------------------------------------}
procedure a2lsf(
freq:pareal;{ (o) lsf coefficients }
a:pareal { (i) lpc coefficients }
);
{----------------------------------------------------------------*
* conversion from lsf coefficients to lpc coefficients
*---------------------------------------------------------------}
procedure lsf2a(
a_coef:pareal; { (o) lpc coefficients }
freq:pareal { (i) lsf coefficients }
);
implementation
procedure a2lsf(
freq:pareal;{ (o) lsf coefficients }
a:pareal { (i) lpc coefficients }
);
var
steps:array [0..LSF_NUMBER_OF_STEPS-1] of real;
step:real;
step_idx:integer;
lsp_index:integer;
p:array [0..LPC_HALFORDER-1] of real;
q:array [0..LPC_HALFORDER-1] of real;
p_pre:array [0..LPC_HALFORDER-1] of real;
q_pre:array [0..LPC_HALFORDER-1] of real;
old_p, old_q:real;
old:^real;
pq_coef:pareal;
omega, old_omega:real;
i:integer;
hlp, hlp1, hlp2, hlp3, hlp4, hlp5:real;
begin
steps[0]:=0.00635;
steps[1]:=0.003175;
steps[2]:=0.0015875;
steps[3]:=0.00079375;
for i:=0 to LPC_HALFORDER-1 do
begin
p[i] := -1.0 * (a[i + 1] + a[LPC_FILTERORDER - i]);
q[i] := a[LPC_FILTERORDER - i] - a[i + 1];
end;
p_pre[0] := -1.0 - p[0];
p_pre[1] := - p_pre[0] - p[1];
p_pre[2] := - p_pre[1] - p[2];
p_pre[3] := - p_pre[2] - p[3];
p_pre[4] := - p_pre[3] - p[4];
p_pre[4] := p_pre[4] / 2;
q_pre[0] := 1.0 - q[0];
q_pre[1] := q_pre[0] - q[1];
q_pre[2] := q_pre[1] - q[2];
q_pre[3] := q_pre[2] - q[3];
q_pre[4] := q_pre[3] - q[4];
q_pre[4] := q_pre[4] / 2;
omega := 0.0;
old_omega := 0.0;
old_p := FLOAT_MAX;
old_q := FLOAT_MAX;
{ Here we loop through lsp_index to find all the
LPC_FILTERORDER roots for omega. }
for lsp_index := 0 to LPC_FILTERORDER-1 do
begin
{ Depending on lsp_index being even or odd, we
alternatively solve the roots for the two LSP equations. }
if ((lsp_index and $1) = 0) then
begin
pq_coef := @p_pre;
old := @old_p;
end
else
begin
pq_coef := @q_pre;
old := @old_q;
end;
{ Start with low resolution grid }
step_idx := 0;
step := steps[step_idx];
while ( step_idx < LSF_NUMBER_OF_STEPS) do
begin
{ cos(10piw) + pq(0)cos(8piw) + pq(1)cos(6piw) +
pq(2)cos(4piw) + pq(3)cod(2piw) + pq(4) }
hlp := cos(omega * TWO_PI);
hlp1 := 2.0 * hlp + pq_coef[0];
hlp2 := 2.0 * hlp * hlp1 - 1.0 + pq_coef[1];
hlp3 := 2.0 * hlp * hlp2 - hlp1 + pq_coef[2];
hlp4 := 2.0 * hlp * hlp3 - hlp2 + pq_coef[3];
hlp5 := hlp * hlp4 - hlp3 + pq_coef[4];
if (((hlp5 * (old^)) <= 0.0) or (omega >= 0.5)) then
begin
if (step_idx = (LSF_NUMBER_OF_STEPS - 1)) then
begin
if (abs(hlp5) >= abs(old^)) then
begin
freq[lsp_index] := omega - step;
end
else
begin
freq[lsp_index] := omega;
end;
if ((old^) >= 0.0) then
begin
old^ := -1.0 * FLOAT_MAX;
end
else
begin
old^ := FLOAT_MAX;
end;
omega := old_omega;
// step_idx := 0;
step_idx := LSF_NUMBER_OF_STEPS;
end
else
begin
if (step_idx = 0) then
begin
old_omega := omega;
end;
inc(step_idx);
omega :=omega - steps[step_idx];
{ Go back one grid step }
step := steps[step_idx];
end;
end
else
begin
{ increment omega until they are of different sign,
and we know there is at least one root between omega
and old_omega }
old^ := hlp5;
omega :=omega + step;
end;
end;
end;
for i := 0 to LPC_FILTERORDER-1 do
begin
freq[i] := freq[i] * TWO_PI;
end;
end;
{----------------------------------------------------------------*
* conversion from lsf coefficients to lpc coefficients
*---------------------------------------------------------------}
procedure lsf2a(
a_coef:pareal; { (o) lpc coefficients }
freq:pareal { (i) lsf coefficients }
);
var
i, j:integer;
hlp:real;
p:array [0..LPC_HALFORDER-1] of real;
q:array [0..LPC_HALFORDER] of real;
a:array [0..LPC_HALFORDER] of real;
a1:array [0..LPC_HALFORDER-1] of real;
a2:array [0..LPC_HALFORDER-1] of real;
b:array [0..LPC_HALFORDER] of real;
b1:array [0..LPC_HALFORDER-1] of real;
b2:array [0..LPC_HALFORDER-1] of real;
begin
for i:=0 to LPC_FILTERORDER-1 do
begin
freq[i] := freq[i] * PI2;
end;
{ Check input for ill-conditioned cases. This part is not
found in the TIA standard. It involves the following 2 IF
blocks. If "freq" is judged ill-conditioned, then we first
modify freq[0] and freq[LPC_HALFORDER-1] (normally
LPC_HALFORDER := 10 for LPC applications), then we adjust
the other "freq" values slightly }
if ((freq[0] <= 0.0) or (freq[LPC_FILTERORDER - 1] >= 0.5)) then
begin
if (freq[0] <= 0.0) then
begin
freq[0] := 0.022;
end;
if (freq[LPC_FILTERORDER - 1] >= 0.5) then
begin
freq[LPC_FILTERORDER - 1] := 0.499;
end;
hlp := (freq[LPC_FILTERORDER - 1] - freq[0]) / (LPC_FILTERORDER - 1);
for i:=1 to LPC_FILTERORDER-1 do
begin
freq[i] := freq[i - 1] + hlp;
end;
end;
fillchar(a1, LPC_HALFORDER*sizeof(real), 0);
fillchar(a2, LPC_HALFORDER*sizeof(real), 0);
fillchar(b1, LPC_HALFORDER*sizeof(real), 0);
fillchar(b2, LPC_HALFORDER*sizeof(real), 0);
fillchar(a , (LPC_HALFORDER+1)*sizeof(real), 0);
fillchar(b , (LPC_HALFORDER+1)*sizeof(real), 0);
{ p[i] and q[i] compute cos(2*pi*omega_begin2jend;) and
cos(2*pi*omega_begin2j-1end; in eqs. 4.2.2.2-1 and 4.2.2.2-2.
Note that for this code p[i] specifies the coefficients
used in .Q_A(z) while q[i] specifies the coefficients used
in .P_A(z) }
for i:=0 to LPC_HALFORDER-1 do
begin
p[i] := cos(TWO_PI * freq[2 * i]);
q[i] := cos(TWO_PI * freq[2 * i + 1]);
end;
a[0] := 0.25;
b[0] := 0.25;
for i:= 0 to LPC_HALFORDER-1 do
begin
a[i + 1] := a[i] - 2 * p[i] * a1[i] + a2[i];
b[i + 1] := b[i] - 2 * q[i] * b1[i] + b2[i];
a2[i] := a1[i];
a1[i] := a[i];
b2[i] := b1[i];
b1[i] := b[i];
end;
for j:=0 to LPC_FILTERORDER-1 do
begin
if (j = 0) then
begin
a[0] := 0.25;
b[0] := -0.25;
end
else
begin
a[0] :=0.0;
b[0] := 0.0;
end;
for i:=0 to LPC_HALFORDER-1 do
begin
a[i + 1] := a[i] - 2 * p[i] * a1[i] + a2[i];
b[i + 1] := b[i] - 2 * q[i] * b1[i] + b2[i];
a2[i] := a1[i];
a1[i] := a[i];
b2[i] := b1[i];
b1[i] := b[i];
end;
a_coef[j + 1] := 2 * (a[LPC_HALFORDER] + b[LPC_HALFORDER]);
end;
a_coef[0] := 1.0;
end;
end.