-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
Copy pathbase.py
65 lines (45 loc) · 1.56 KB
/
base.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
class Dataset(object):
def __getitem__(self, index):
raise NotImplementedError("A Dataset must implement __getitem__(index) method.")
def __len__(self):
raise NotImplementedError("A Dataset must implement __len__() method.")
def __iter__(self):
for i in range(self.__len__()):
yield self.__getitem__(i)
def __call__(self, *args, **kwargs):
return self.__iter__()
class DatasetWrapper(object):
def __init__(self, ds):
self.ds = ds
self.ds_len = len(ds)
def __len__(self):
return len(self.ds)
def __iter__(self):
for dp in self.ds:
yield dp
def __call__(self, *args, **kwargs):
return self.__iter__()
class IndexableDatasetWrapper(object):
def __init__(self, ds):
self.ds = ds
self.ds_len = len(ds)
def __getitem__(self, index):
return self.ds.__getitem__(index)
def __len__(self):
return len(self.ds)
def __call__(self, *args, **kwargs):
return self
class Transform(object):
def __call__(self, *args, **kwargs):
raise NotImplementedError("Transform must implement __call__() method.")
class _Transforms_for_tf_dataset(object):
"""
This class aggregate Transforms into one object in order to use tf.data.Dataset.map API
"""
def __init__(self, transforms):
self.transforms = transforms
def __call__(self, *args):
data_list = list(args)
for transform in self.transforms:
data_list = transform(*data_list)
return data_list