Skip to content

Commit 0300571

Browse files
authored
Update pretrained_models.md
Added Kaggle label to tfhub.dev links directing to kaggle, added kaggle label to documentation wherever necesasry.
1 parent 246ab77 commit 0300571

File tree

1 file changed

+11
-11
lines changed

1 file changed

+11
-11
lines changed

official/nlp/docs/pretrained_models.md

Lines changed: 11 additions & 11 deletions
Original file line numberDiff line numberDiff line change
@@ -16,8 +16,8 @@ models.
1616

1717
### How to Initialize from Checkpoint
1818

19-
**Note:** TF-HUB/Savedmodel is the preferred way to distribute models as it is
20-
self-contained. Please consider using TF-HUB for finetuning tasks first.
19+
**Note:** TF-HUB/Kaggle-Savedmodel is the preferred way to distribute models as it is
20+
self-contained. Please consider using TF-HUB/Kaggle for finetuning tasks first.
2121

2222
If you use the [NLP training library](train.md),
2323
you can specify the checkpoint path link directly when launching your job. For
@@ -29,10 +29,10 @@ python3 train.py \
2929
--params_override=task.init_checkpoint=PATH_TO_INIT_CKPT
3030
```
3131

32-
### How to load TF-HUB SavedModel
32+
### How to load TF-HUB/Kaggle SavedModel
3333

3434
Finetuning tasks such as question answering (SQuAD) and sentence
35-
prediction (GLUE) support loading a model from TF-HUB. These built-in tasks
35+
prediction (GLUE) support loading a model from TF-HUB/Kaggle. These built-in tasks
3636
support a specific `task.hub_module_url` parameter. To set this parameter,
3737
replace `--params_override=task.init_checkpoint=...` with
3838
`--params_override=task.hub_module_url=TF_HUB_URL`, like below:
@@ -54,7 +54,7 @@ in order to keep consistent with BERT paper.
5454

5555
### Checkpoints
5656

57-
Model | Configuration | Training Data | Checkpoint & Vocabulary | TF-HUB SavedModels
57+
Model | Configuration | Training Data | Checkpoint & Vocabulary | Kaggle SavedModels
5858
---------------------------------------- | :--------------------------: | ------------: | ----------------------: | ------:
5959
BERT-base uncased English | uncased_L-12_H-768_A-12 | Wiki + Books | [uncased_L-12_H-768_A-12](https://storage.googleapis.com/tf_model_garden/nlp/bert/v3/uncased_L-12_H-768_A-12.tar.gz) | [`BERT-Base, Uncased`](https://tfhub.dev/tensorflow/bert_en_uncased_L-12_H-768_A-12/)
6060
BERT-base cased English | cased_L-12_H-768_A-12 | Wiki + Books | [cased_L-12_H-768_A-12](https://storage.googleapis.com/tf_model_garden/nlp/bert/v3/cased_L-12_H-768_A-12.tar.gz) | [`BERT-Base, Cased`](https://tfhub.dev/tensorflow/bert_en_cased_L-12_H-768_A-12/)
@@ -74,7 +74,7 @@ We also have pretrained BERT models with variants in both network architecture
7474
and training methodologies. These models achieve higher downstream accuracy
7575
scores.
7676

77-
Model | Configuration | Training Data | TF-HUB SavedModels | Comment
77+
Model | Configuration | Training Data | Kaggle SavedModels | Comment
7878
-------------------------------- | :----------------------: | -----------------------: | ------------------------------------------------------------------------------------: | ------:
7979
BERT-base talking heads + ggelu | uncased_L-12_H-768_A-12 | Wiki + Books | [talkheads_ggelu_base](https://tfhub.dev/tensorflow/talkheads_ggelu_bert_en_base/1) | BERT-base trained with [talking heads attention](https://arxiv.org/abs/2003.02436) and [gated GeLU](https://arxiv.org/abs/2002.05202).
8080
BERT-large talking heads + ggelu | uncased_L-24_H-1024_A-16 | Wiki + Books | [talkheads_ggelu_large](https://tfhub.dev/tensorflow/talkheads_ggelu_bert_en_large/1) | BERT-large trained with [talking heads attention](https://arxiv.org/abs/2003.02436) and [gated GeLU](https://arxiv.org/abs/2002.05202).
@@ -96,12 +96,12 @@ ALBERT repository.
9696

9797
### Checkpoints
9898

99-
Model | Training Data | Checkpoint & Vocabulary | TF-HUB SavedModels
99+
Model | Training Data | Checkpoint & Vocabulary | Kaggle SavedModels
100100
---------------------------------------- | ------------: | ----------------------: | ------:
101-
ALBERT-base English | Wiki + Books | [`ALBERT Base`](https://storage.googleapis.com/tf_model_garden/nlp/albert/albert_base.tar.gz) | https://tfhub.dev/tensorflow/albert_en_base/3
102-
ALBERT-large English | Wiki + Books | [`ALBERT Large`](https://storage.googleapis.com/tf_model_garden/nlp/albert/albert_large.tar.gz) | https://tfhub.dev/tensorflow/albert_en_large/3
103-
ALBERT-xlarge English | Wiki + Books | [`ALBERT XLarge`](https://storage.googleapis.com/tf_model_garden/nlp/albert/albert_xlarge.tar.gz) | https://tfhub.dev/tensorflow/albert_en_xlarge/3
104-
ALBERT-xxlarge English | Wiki + Books | [`ALBERT XXLarge`](https://storage.googleapis.com/tf_model_garden/nlp/albert/albert_xxlarge.tar.gz) | https://tfhub.dev/tensorflow/albert_en_xxlarge/3
101+
ALBERT-base English | Wiki + Books | [`ALBERT Base`](https://storage.googleapis.com/tf_model_garden/nlp/albert/albert_base.tar.gz) | [albert_en_base](https://tfhub.dev/tensorflow/albert_en_base/3)
102+
ALBERT-large English | Wiki + Books | [`ALBERT Large`](https://storage.googleapis.com/tf_model_garden/nlp/albert/albert_large.tar.gz) | [albert_en_large](https://tfhub.dev/tensorflow/albert_en_large/3)
103+
ALBERT-xlarge English | Wiki + Books | [`ALBERT XLarge`](https://storage.googleapis.com/tf_model_garden/nlp/albert/albert_xlarge.tar.gz) | [albert_en_xlarge](https://tfhub.dev/tensorflow/albert_en_xlarge/3)
104+
ALBERT-xxlarge English | Wiki + Books | [`ALBERT XXLarge`](https://storage.googleapis.com/tf_model_garden/nlp/albert/albert_xxlarge.tar.gz) | [albert_en_xxlarge](https://tfhub.dev/tensorflow/albert_en_xxlarge/3)
105105

106106

107107
## ELECTRA

0 commit comments

Comments
 (0)