-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmake_and_train_rnn.py
executable file
·57 lines (47 loc) · 2.81 KB
/
make_and_train_rnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
from Helper_Functions import prepare_directory
from ContextFreeGrammar import get_n_samples
from RNNTokenPredictor import RNNTokenPredictor, train_rnn, save_rnn
import math
from time import process_time
def make_rnn_for_cfg(cfg,informal_name,train_size=10000,validation_size=1000,\
num_layers=2,hidden_dim=10,input_dim=4,RNNClass="LSTM",\
iterations_per_learning_rate=5,learning_rates=(0.01,0.004,0.001,0.0003),batch_size=50,\
check_improvement_every=50,wee_sample_rate=10,sample_cutoff=50,subfolder="."):
train_set = get_n_samples(cfg,train_size)
validation_set = get_n_samples(cfg,validation_size)
rnn = RNNTokenPredictor(cfg.terminals(),input_dim,hidden_dim,num_layers,\
RNNClass,informal_name=informal_name,dropout=0.5)
rnn_folder = "rnns/"+subfolder+"/"+informal_name+"/"+rnn.name # rnn.name is a timestamp..
training_prints_filename = rnn_folder+"/training_prints.txt"
prepare_directory(training_prints_filename,includes_filename=True)
with open(training_prints_filename,"a") as f:
print("training rnn with train set of size:",len(train_set),", average length:",\
sum([len(s) for s in train_set])/len(train_set),file=f)
print("validation set size:",len(validation_set),", average length:",\
sum([len(s) for s in validation_set])/len(validation_set),file=f)
print("first 10 samples in train set:\n","\n".join([str(s) for s in train_set[:10]]),file=f)
str_validation = [str(s) for s in validation_set]
str_train = [str(s) for s in train_set]
validation_not_in_train = set(str_validation) - set(str_train)
intersection = set(str_validation) - validation_not_in_train
t_notin_v = len([True for s in str_train if not s in intersection])
v_notin_t = len([True for s in str_validation if not s in intersection])
print("num sequences in train set not in validation:",t_notin_v,"(",int(100*t_notin_v/len(train_set)),"% )",file=f)
print("num sequences in validation set not in train:",v_notin_t,"(",int(100*v_notin_t/len(validation_set)),"% )",file=f)
print("rnn has:",num_layers,"layers, hidden dim:",hidden_dim,"input dim:",input_dim)
print("using batch size:",batch_size)
start = process_time()
rnn = train_rnn(rnn,train_set,validation_set,rnn_folder,
iterations_per_learning_rate=iterations_per_learning_rate,learning_rates=learning_rates,
batch_size=batch_size,check_improvement_every=check_improvement_every,
step_size_for_prefs=100,step_size_for_progress_checks=200,
progress_seqs_at_a_time=1000,wee_sample_rate=wee_sample_rate,
print_sample_joiner="" if cfg.sample_as_strings else " ",
sample_cutoff=sample_cutoff)
print("train rnn returned successfully",flush=True)
print("this is the rnn:",rnn,flush=True)
print("its name is:",rnn.informal_name,flush=True)
with open(training_prints_filename,"a") as f:
print("total time training:",process_time()-start,file=f)
return rnn, rnn_folder
# return 0