-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathlineplot.R
133 lines (117 loc) · 4.17 KB
/
lineplot.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
### Label points at the zero before the first nonzero y value.
lasso.labels <- list(
rot=60,
gapply.fun({ ## figure out where the path hits 0
d <- d[order(d$x),]
zero <- d$y[1]
i <- which(d$y!=zero)[1]
if(!is.na(i)){
just <- as.integer(d[i,"y"]>zero)
transform(d[i-1,],hjust=just,vjust=just)
}
}),
"calc.boxes",
## calculate how wide the tilted box is
dl.trans(hyp=h/sin(2*pi*rot/360)),
dl.trans(left=x-hyp/2,right=x+hyp/2),
## avoid collisions between tilted boxes
function(d,...){
solver <- qp.labels("x","left","right")
## apply the solver independently for top and bottom labels.
solution.list <- list()
for(vj in c(0,1)){
these <- d$vjust == vj
if(any(these)){
one.side <- d[these,]
solved <- solver(one.side)
solution.list[[paste(vj)]] <- solved
}
}
do.call(rbind, solution.list)
})
### Positioning Method for the first of a group of points.
first.points <- label.endpoints(min,1)
### Positioning Method for the last of a group of points.
last.points <- label.endpoints(max,0)
### Positioning Method for the first of a group of points.
left.points <- first.points
### Positioning Method for the last of a group of points.
right.points <- last.points
### Do first or last, whichever has points most spread out.
maxvar.points <- function(d,...){
myrange <- function(x){
if(is.factor(x))levels(x)[c(1,nlevels(x))]
else range(x,na.rm=TRUE)
}
vars <- sapply(myrange(d$x),function(v){
var(d[d$x==v,"y"],na.rm=TRUE)
})
FUN <- if(is.na(vars[1]))"last.points"
else if(is.na(vars[2]))"first.points"
else if(diff(vars)<0)"first.points" else "last.points"
apply.method(FUN,d,...)
}
### Label last points from QP solver that ensures labels do not collide.
last.qp <- vertical.qp("last.points")
### Label first points from QP solver that ensures labels do not collide.
first.qp <- vertical.qp("first.points")
### Draw a speech polygon to the first point.
left.polygons <- polygon.method("left")
### Draw a speech polygon to the last point.
right.polygons <- polygon.method("right")
### Draw a speech polygon to the first point.
first.polygons <- left.polygons
### Draw a speech polygon to the last point.
last.polygons <- right.polygons
### Draw a speech polygon to the top point.
top.polygons <- polygon.method("top")
### Draw a speech polygon to the bottom point.
bottom.polygons <- polygon.method("bottom")
### Label first or last points, whichever are more spread out, and use
### a QP solver to make sure the labels do not collide.
maxvar.qp <- vertical.qp("maxvar.points")
lines2 <- function
### Positioning Method for 2 groups of longitudinal data. One curve
### is on top of the other one (on average), so we label the top one
### at its maximal point, and the bottom one at its minimal
### point. Vertical justification is chosen to minimize collisions
### with the other line. This may not work so well for data with high
### variability, but then again lineplots may not be the best for
### these data either.
(d,
### The data.
offset=0.3,
### Offset from 0 or 1 for the vjust values.
...
### ignored.
){
if(length(unique(d$groups))!=2)
stop("need 2 groups for lines2")
top <- 0-offset
bottom <- 1+offset
y <- gapply(d,get.means)
gapply(y,function(D,...){
bigger.on.average <- D$y==max(y$y)
f <- if(bigger.on.average)max else min
compare <- get(if(bigger.on.average)">" else "<")
is.group <- d$groups==D$groups
ld <- d[is.group,]
other <- d[!is.group,]
find.closest.y <- function(x){
closest.x.on.other.line <- which.min(abs(other$x-x))
other[closest.x.on.other.line,"y"]
}
ld$other.yvals <- sapply(ld$x,find.closest.y)
ld$diff <- abs(ld$y-ld$other.yvals)
more.extreme <- compare(ld$y,ld$other.yvals)
ld <- ld[which(more.extreme),] ## which since can have NA
ld <- ld[ld$y==f(ld$y),]
which.closest <- which.max(ld$diff)
pos <- ld[which.closest,]
transform(pos,vjust=if(bigger.on.average)top else bottom)
})
}
### Draw a box with the label inside, at the point furthest away from
### the plot border and any other curve.
angled.boxes <- list(
"far.from.others.borders","calc.boxes","enlarge.box","draw.rects")