-
Notifications
You must be signed in to change notification settings - Fork 0
/
descritivo.Rmd
245 lines (204 loc) · 7.38 KB
/
descritivo.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
---
title: "descritivo.Rmd"
author: "Tatiana Saturno da Silva"
date: "26 de outubro de 2016"
output: html_document
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
if(!require(plotly)){
install.packages("plotly", dependencies = T)
}
if(!require(Cairo)){
install.packages('Cairo')
}
if(!require(ggplot2)){
install.packages("ggplot2", dependencies = T)
}
if(!require(dplyr)){
install.packages("dplyr", dependencies = T)
}
if(!require(grid)){
install.packages("grid", dependencies = T)
}
if(!require(tidyr)){
install.packages("tidyr", dependencies = T)
}
library(Cairo)
library(ggplot2)
library(scales)
library(dplyr)
library(grid)
library(plotly)
library(tidyr)
theme_set(theme_bw())
```
## R Markdown
Exploratory Data Analysis for the Crime Forecasting Challenge
## Import Data
```{r import}
d <- read.csv(file = "data/mp_data.csv", header = T, sep = ";", stringsAsFactors = F)
data <- d
# convert character to date
data$occ_date <- as.POSIXct(data$occ_date, format="%d/%m/%Y")
# removing na's
data <- na.omit(data)
```
## Brief Data Description
```{r description, echo=FALSE}
# see general aspects of the data
str(data)
# view top few records of data
head(data)
# Five Numbersummary & interqurtile range
# Returns Tukey's five number summary (minimum, lower-hinge, median, upper-hinge, maximum) for the input data.
fivenum(data$census_trac)
# data's summary
summary(data)
# uniques
unique(data$CATEGORY)
unique(data$CALL.GROUPS)
unique(data$final_case_type)
unique(data$CASE.DESC)
unique(data$census_tract)
```
## Including Plots
Category's percentage:
```{r category_percentage, echo=FALSE}
p <-ggplot(data, aes(CATEGORY)) +
geom_bar(aes(y = (..count..)/sum(..count..), fill = CATEGORY), stat="count") +
geom_text(aes( label = scales::percent((..count..)/sum(..count..)),
y= (..count..)/sum(..count..) ), stat= "count", vjust = -.5) +
labs(x = "Category" ,y = "Percent", fill="Category") +
scale_y_continuous(labels=percent)+
theme(axis.text.x=element_text(angle=45, hjust=1))
ggplotly()
```
Call description's percentage:
```{r call_percentage, echo=FALSE}
p <-ggplot(data, aes(CALL.GROUPS)) +
geom_bar(aes(y = (..count..)/sum(..count..), fill = CALL.GROUPS), stat="count") +
geom_text(aes( label = scales::percent((..count..)/sum(..count..)),
y= (..count..)/sum(..count..) ), stat= "count", vjust = -.5) +
labs(x = "Call Groups" ,y = "Percent", fill="Call Groups") +
scale_y_continuous(labels=percent) +
theme(axis.text.x=element_text(angle=45, hjust=1))
ggplotly()
```
Final case type's percentage:
```{r final_percentage, echo=FALSE}
p <-ggplot(data, aes(final_case_type)) +
geom_bar(aes(y = (..count..)/sum(..count..), fill = final_case_type), stat="count") +
geom_text(aes( label = scales::percent((..count..)/sum(..count..)),
y= (..count..)/sum(..count..) ), stat= "count", vjust = -.5) +
labs(x = "Final Case" ,y = "Percent", fill="Final Case") +
scale_y_continuous(labels=percent)+
theme(axis.text.x=element_text(angle=45, hjust=1))
ggplotly()
```
Census tract's percentage:
```{r census_percentage, echo=FALSE}
p <-ggplot(data, aes(as.character(census_tract))) +
geom_bar(aes(y = (..count..)/sum(..count..), fill = as.character(census_tract)), stat="count") +
geom_text(aes( label = scales::percent((..count..)/sum(..count..)),
y= (..count..)/sum(..count..) ), stat= "count", vjust = -.5) +
labs(x = "Census Tract" ,y = "Percent", fill="Census Tract") +
scale_y_continuous(labels=percent) +
theme(axis.text.x=element_text(angle=45, hjust=1))
ggplotly()
```
District's percentage:
```{r district_percentage, echo=FALSE}
p <-ggplot(data, aes(as.character(DISTRICT))) +
geom_bar(aes(y = (..count..)/sum(..count..), fill = as.character(DISTRICT)), stat="count") +
geom_text(aes( label = scales::percent((..count..)/sum(..count..)),
y= (..count..)/sum(..count..) ), stat= "count", vjust = -.5) +
labs(x = "District" ,y = "Percent", fill="District") +
scale_y_continuous(labels=percent) +
theme(axis.text.x=element_text(angle=45, hjust=1))
ggplotly()
```
Date's percentage:
```{r date_percentage, echo=FALSE}
p <-ggplot(data, aes(strftime(occ_date, format = "%Y"))) +
geom_bar(aes(y = (..count..)/sum(..count..), fill = strftime(occ_date, format = "%Y")), stat="count") +
geom_text(aes( label = scales::percent((..count..)/sum(..count..)),
y= (..count..)/sum(..count..) ), stat= "count", vjust = -.5) +
labs(x = "Date" ,y = "Percent", fill="Date") +
scale_y_continuous(labels=percent) +
theme(axis.text.x=element_text(angle=45, hjust=1))
ggplotly()
```
## Multivariate Analysis
District Density Analysis:
```{r bivariable, echo=FALSE}
districts <- distinct(data, DISTRICT, .keep_all = TRUE)
# calculate percentage
get_perc <- data %>%
group_by(DISTRICT) %>%
summarise (n = n()) %>%
mutate(freq = n / sum(n)) %>%
mutate(perc = freq*100)
# join district with percentage
districts <- inner_join(districts, get_perc, by = "DISTRICT")
districts <- select(districts, DISTRICT, x_coordinate, y_coordinate, perc)
# normalize coordinates
districts$x_coordinate <- districts$x_coordinate/100000
districts$y_coordinate <- districts$y_coordinate/100000
districts2 <- with(districts, districts[rep(1:nrow(districts), perc),])
# density's colors
colfunc <- colorRampPalette(c("darkblue", "lightblue", "green", "yellow", "red"))
p<-ggplot(districts2, aes(x_coordinate, y_coordinate)) +
stat_density2d(geom="tile", aes(fill = ..density..), contour = FALSE) +
scale_fill_gradientn(colours=colfunc(400)) +
xlim(c(min(districts$x_coordinate), max(districts$x_coordinate))) + ylim(c(min(districts$y_coordinate), max(districts$y_coordinate))) +
geom_density2d(colour="black", bins=10) +
geom_point() +
geom_text(aes(label=DISTRICT), size=3, hjust=-.25, vjust=.75) +
labs(x = "x", y = "y", fill = "Density")
guides(fill = guide_colorbar(barwidth = 0.5, barheight = 10)) +
theme(legend.title=element_blank())+
theme(axis.text.x=element_text(angle=45, hjust=1))
ggplotly()
```
## District histrogram's density
District vs Category:
```{r districtXcategory_hist_den, echo=FALSE}
g <- ggplot(d, aes(DISTRICT))
g1 <- g + geom_histogram(aes(y=..density.., fill = CATEGORY), binwidth = 10) +
labs(x = "District", y = "Density", fill = "CATEGORY")+
theme(axis.text.x=element_text(angle=45, hjust=1))
ggplotly(g1)
```
District vs Final Case Type:
```{r districtXfinal_hist_den, echo=FALSE}
g2 <- g + geom_histogram(aes(y=..density.., fill = final_case_type), binwidth = 10) +
labs(x = "District", y = "Density", fill = "Final Case Type")+
theme(axis.text.x=element_text(angle=45, hjust=1))
ggplotly(g2)
```
## Date histrogram's density
Load data:
```{r load_data, echo=FALSE}
#date to numeric
data$occ_date <- as.numeric(data$occ_date)
# removing na's
data <- na.omit(data)
```
Date vs Category:
```{r density_dateXcategory, echo=FALSE}
p <- ggplot(data, aes(occ_date)) +
scale_y_continuous(labels=percent) +
theme(legend.position="none")
p1 <- p + geom_bar(aes(y = ..density.., fill = CATEGORY), stat="density") +
labs(x = "Date" ,y = "Density", fill="Category")+
theme(axis.text.x=element_text(angle=45, hjust=1))
ggplotly(p1)
```
Date vs District:
```{r density_dateXdistrict, echo=FALSE}
p2 <- p + geom_bar(aes(y = ..density.., fill = as.character(DISTRICT)), stat="density") +
labs(x = "Date" ,y = "Density", fill="District")+
theme(axis.text.x=element_text(angle=45, hjust=1))
ggplotly(p2)
```