-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy paththemath.js
232 lines (218 loc) · 6.11 KB
/
themath.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
// --------------------------------- 80chars ---------------------------------->
// Most of these are from Numerical Recipes.
// TagTime currently just uses GammaCDF() which gets the probability of getting
// a given number of pings in a given amount of time.
const log = Math.log // Keep
const exp = Math.exp // Mathematics
const abs = Math.abs // Beautiful
const sqrt = Math.sqrt
function LogGamma(Z) {
var S = 1 + 76.18009173 / Z - 86.50532033 / (Z+1) +
24.01409822 / (Z+2) - 1.231739516 / (Z+3) +
0.00120858003 / (Z+4) - 0.00000536382 / (Z+5)
return (Z-.5)*log(Z+4.5)-(Z+4.5)+log(S*2.50662827465)
}
// Continued fraction representation for approximating GammaCDF
function Gcf(X,A) { // Good for X > A+1
var A0 = 0; var B0 = 1
var A1 = 1; var B1 = X
var Aold = 0
var N = 0
while (abs((A1-Aold)/A1) > .00001) {
Aold = A1
N += 1
A0 = A1+(N-A)*A0
B0 = B1+(N-A)*B0
A1 = X*A0+N*A1
B1 = X*B0+N*B1
A0 = A0/B1
B0 = B0/B1
A1 = A1/B1
B1 = 1
}
return 1 - exp(A*log(X)-X-LogGamma(A))*A1
}
// Series representation for approximating GammaCDF
function Gser(X,A) { // Good for X < A+1
var G = 1/A
var T9 = 1/A
var I = 1
while (T9 > G*.00001) {
T9 *= X/(A+I)
G += T9
I += 1
}
return G*exp(A*log(X)-X-LogGamma(A))
}
// Standard erf function, from http://stackoverflow.com/questions/14846767
function erf(x) {
var sign = (x >= 0 ? 1 : -1)
x = abs(x)
var a1 = 0.254829592
var a2 = -0.284496736
var a3 = 1.421413741
var a4 = -1.453152027
var a5 = 1.061405429
var p = 0.3275911
var t = 1/(1 + p*x)
var y = 1 - (((((a5*t + a4) * t) + a3) * t + a2) * t + a1) * t*exp(-x*x)
return sign*y // erf(-x) = -erf(x)
}
function NormalCDF(x, mean = 0, variance = 1) {
return 0.5 * (1 + erf((x - mean) / (sqrt(2*variance))))
}
// Found this one somewhere ("HASTINGS. MAX ERROR = .000001") Not currently used
function NormalCDF2(X) {
var T = 1/(1+.2316419*abs(X))
var D = .3989423*exp(-X*X/2)
var P = D*T*(.3193815+T*(-.3565638+T*(1.781478+T*(-1.821256+T*1.330274))))
return (X > 0 ? 1-P : P)
}
// Helper function for GammaCDF
function GammaCDF0(x, a) {
if (a <= 0) { return 1 }
if (x <= 0) { return 0 }
if (a > 200) {
var z = (x-a)/sqrt(a)
var y = NormalCDF(z)
var b1 = 2/sqrt(a)
var phiz = .39894228*exp(-z*z/2)
var w = y-b1*(z*z-1)*phiz/6 // Edgeworth1
var b2 = 6/a
var u = 3*b2*(z*z-3)+b1*b1*(z^4-10*z*z+15)
return w-phiz*z*u/72 // Edgeworth2
}
return (x < a+1 ? Gser(x,a) : Gcf(x,a))
}
// CDF(x) of a gamma distribution with parameters alpha (A) and beta (B)
function GammaCDF(x, A, B) { return GammaCDF0(x/B, A) }
// Inverse of above: what x makes GammaCDF(x, A, B) == p
// For TagTime: hours to set aside so Pr(success) == p is ig(p, pings, gap)
function ig(p, A, B, min=0, max=8) {
if (p<0) { p = 0 }
if (p>1) { p = 1 }
var m = (min+max)/2
if (abs(min-max)<1/60) { return m } // accurate to within 1 minute
var p2 = GammaCDF(max, A, B)
//console.log(`${min} ${max} -> ${GammaCDF(min, A, B)} ${p2}`)
if (p2 < p) { return ig(p, A, B, min, 2*max) }
var p1 = GammaCDF(min, A, B)
var pm = GammaCDF(m, A, B)
if (pm<p) { return ig(p, A, B, m, max) }
return ig(p, A, B, min, m)
}
/*
Above just does a simple binary search but below is some code that I guess
does something fancier? Ported from some C# code I found somewhere.
/ ********************************************************************
// Inverse of complemented imcomplete gamma integral
// Given p, the function finds x such that
// igamc( a, x ) = p.
// Starting with the approximate value
// x = a*t^3 where t = 1 - d - ndtri(p)*sqrt(d) and d = 1/(9*a),
// the routine performs up to 10 Newton iterations to find the
// root of igamc(a,x) - p = 0.
// ACCURACY:
// Tested at random a, p in the intervals indicated.
// a p Relative error:
// arithmetic domain domain # trials peak rms
// IEEE 0.5,100 0,0.5 100000 1.0e-14 1.7e-15
// IEEE 0.01,0.5 0,0.5 100000 9.0e-14 3.4e-15
// IEEE 0.5,10000 0,0.5 20000 2.3e-13 3.8e-14
// Cephes Math Library Release 2.8: June, 2000
// Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
********************************************************************* /
function invincompletegammac(a, y0) {
var EPS = 0.000000000000001 // when browsers support es6 then const not var
var MAX = 4503599627370496.0
var x0 = 0
var x1 = 0
var x = 0
var yl = 0
var yh = 0
var y = 0
var d = 0
var lgm = 0
var dithresh = 0
var i = 0
var dir = 0
var tmp = 0
x0 = MAX
yl = 0
x1 = 0
yh = 1
dithresh = 5*EPS
d = 1/(9*a)
y = 1-d-normaldistr.invnormaldistribution(y0)*sqrt(d) // TODO
x = a*y*y*y
lgm = LogGamma(a)
i = 0
while (i<10) {
if (x>x0 || x<x1) { d = 0.0625; break }
y = incompletegammac(a, x) // TODO: translate to gammaCDF
if (y<yl || y>yh) { d = 0.0625; break }
if (y<y0) { x0 = x; yl = y }
else { x1 = x; yh = y }
d = (a-1)*log(x)-x-lgm
if (d<-709.78271289338399) { d = 0.0625; break }
d = -exp(d)
d = (y-y0)/d
if (abs(d/x)<EPS) { return x }
x = x-d
i = i+1
}
if (x0===MAX) {
if (x<=0) { x = 1 }
while (x0===MAX) {
x = (1+d)*x
y = incompletegammac(a, x)
if (y<y0) {
x0 = x
yl = y
break
}
d = d+d
}
}
d = 0.5
dir = 0
i = 0
while (i<400 ) {
x = x1+d*(x0-x1)
y = incompletegammac(a, x) // TODO
lgm = (x0-x1)/(x1+x0)
if (abs(lgm)<dithresh) { break }
lgm = (y-y0)/y0
if (abs(lgm)<dithresh) { break }
if (x<=0.0) { break }
if (y>=y0) {
x1 = x
yh = y
if (dir<0) {
dir = 0
d = 0.5
}
else {
if (dir>1) { d = 0.5*d+0.5 }
else { d = (y0-yl)/(yh-yl) }
}
dir += 1
}
else {
x0 = x
yl = y
if (dir>0) {
dir = 0
d = 0.5
}
else {
if (dir < -1) { d *= 0.5 }
else { d = (y0-yl)/(yh-yl) }
}
dir -= 1
}
i += 1
}
return x
}
*/