-
Notifications
You must be signed in to change notification settings - Fork 184
/
Copy pathfft.cpp
87 lines (79 loc) · 2.2 KB
/
fft.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
typedef long double T_DOUBLE; // May be changed to double for more speed and less precision
struct cpx
{
cpx(){}
cpx(T_DOUBLE aa):a(aa),b(0){}
cpx(T_DOUBLE aa, T_DOUBLE bb):a(aa),b(bb){}
T_DOUBLE a;
T_DOUBLE b;
T_DOUBLE modsq(void) const
{
return a * a + b * b;
}
cpx bar(void) const
{
return cpx(a, -b);
}
};
cpx operator +(cpx a, cpx b)
{
return cpx(a.a + b.a, a.b + b.b);
}
cpx operator *(cpx a, cpx b)
{
return cpx(a.a * b.a - a.b * b.b, a.a * b.b + a.b * b.a);
}
cpx operator /(cpx a, cpx b)
{
cpx r = a * b.bar();
return cpx(r.a / b.modsq(), r.b / b.modsq());
}
cpx EXP(T_DOUBLE theta)
{
return cpx(cos(theta),sin(theta));
}
const T_DOUBLE two_pi = 4 * acos((T_DOUBLE)0);
// in: input array
// out: output array
// step: {SET TO 1} (used internally)
// size: length of the input/output {MUST BE A POWER OF 2}
// dir: either plus or minus one (direction of the FFT)
// RESULT: out[k] = \sum_{j=0}^{size - 1} in[j] * exp(dir * 2pi * i * j * k / size)
void FFT(cpx *in, cpx *out, int step, int size, int dir)
{
if(size < 1) return;
if(size == 1)
{
out[0] = in[0];
return;
}
int half = size >> 1;
FFT(in, out, step * 2, half, dir);
FFT(in + step, out + half, step << 1, half, dir);
for(int i = 0 ; i < half ; i++)
{
cpx even = out[i];
cpx odd = out[i + half];
out[i] = even + EXP(dir * two_pi * i / size) * odd;
out[i + half] = even + EXP(dir * two_pi * (i + half) / size) * odd;
}
}
// f: input array f
// g: input array g
// h: output array h
// size: length of f/g/h {MUST BE A POWER OF 2}
// RESULT: h[i] = sum of f[k]*g[i-k] for k=0..(size-1)
// Note: f and g are cyclic (e.g. f[-1] = f[size-1]), so they may be padded
// the right with zeroes to instead compute an acyclic convolution.
void FFTConvolution(cpx *f, cpx *g, cpx *h, int size)
{
cpx *F = new cpx[size], *G = new cpx[size], *H = new cpx[size];
FFT(f, F, 1, size, 1);
FFT(g, G, 1, size, 1);
for (int i = 0; i < size; i++) H[i] = F[i] * G[i];
FFT(H, h, 1, size, -1);
for (int i = 0; i < size; i++) h[i] = h[i] / size;
delete [] F;
delete [] G;
delete [] H;
}