-
Notifications
You must be signed in to change notification settings - Fork 112
/
Copy pathhamilton.c
1138 lines (1020 loc) · 35.2 KB
/
hamilton.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Copyright (C) 2023 Max Nurzia
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the “Software”), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* Source: https://github.com/mnurzia/hamrgb
*/
#include <assert.h>
#include <inttypes.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
typedef uint64_t u64;
typedef uint32_t u32;
typedef uint8_t u8;
typedef int8_t s8;
/* parameters */
static u32 x_bits = 13, y_bits = 11;
static u32 r_bits = 8, g_bits = 8, b_bits = 8;
/* return number of unique x-coordinates */
static inline u32 x_span()
{
return 1 << x_bits;
}
/* return number of unique y-coordinates */
static inline u32 y_span()
{
return 1 << y_bits;
}
/* return number of unique pixel positions */
static inline u32 pixels()
{
return x_span() * y_span();
}
/* return number of unique r-coordinates */
static inline u32 r_span()
{
return 1 << r_bits;
}
/* return number of unique g-coordinates */
static inline u32 g_span()
{
return 1 << g_bits;
}
/* return number of unique b-coordinates */
static inline u32 b_span()
{
return 1 << b_bits;
}
/* return number of unique colors */
static inline u32 colors()
{
return r_span() * g_span() * b_span();
}
/* compose bitfield */
static inline u32 bf_compress(u32 value, u32 base_index, u32 width)
{
return (value & ((1 << width) - 1)) << base_index;
}
/* decompose bitfield */
static inline u32 bf_extract(u32 value, u32 base_index, u32 width)
{
return (value >> base_index) & ((1 << width) - 1);
}
/* sign bit used for packed directions */
typedef u8 sign_flag;
enum { SIGN_FLAG_POS = 0, SIGN_FLAG_NEG = 1 };
/* convert sign bit [0 = positive, 1 = negative] to 1 or -1, respectively */
static inline int sign_flag_to_int(sign_flag sf)
{
return ((int) sf) * -2 + 1;
}
/* axes used for moving around the xy rectangle / rgb cube */
typedef u8 axis;
enum { AXIS_X = 0, AXIS_Y, AXIS_Z };
/* get span of axis (square) */
static u32 axis_span_square(axis ax)
{
return (ax == AXIS_X) ? x_span() : y_span();
}
/* get span of axis (cube) */
static u32 axis_span_cube(axis ax)
{
return (ax == AXIS_X) ? r_span() : (ax == AXIS_Y) ? g_span() : b_span();
}
/* bitset of multiple axes */
typedef u8 axis_flag;
/* a direction is just an axis combined with a sign */
typedef u8 dir;
#define DIR_PX dir_make(SIGN_FLAG_POS, AXIS_X)
#define DIR_NX dir_make(SIGN_FLAG_NEG, AXIS_X)
#define DIR_PY dir_make(SIGN_FLAG_POS, AXIS_Y)
#define DIR_NY dir_make(SIGN_FLAG_NEG, AXIS_Y)
#define DIR_PZ dir_make(SIGN_FLAG_POS, AXIS_Z)
#define DIR_NZ dir_make(SIGN_FLAG_NEG, AXIS_Z)
#define DIR_INVALID (DIR_NZ + 1)
/* create dir from sign flag and axis */
static inline dir dir_make(sign_flag sf, axis ax)
{
return ax * 2 + sf;
}
/* get axis of dir */
static inline dir dir_axis(dir d)
{
return d >> 1;
}
/* get sign of dir */
static inline sign_flag dir_sign_flag(u8 d)
{
return d & 1;
}
/* invert sign of dir */
static inline dir dir_invert(dir d)
{
return dir_make(!dir_sign_flag(d), dir_axis(d));
}
/* bitset of combined directions */
typedef u8 dir_flag;
/* convert dir to dir bitset */
static inline dir_flag dir_to_dir_flag(dir d)
{
return 1 << d;
}
/* point on the xy square */
typedef u32 sq_point;
/* half-point on the xy square */
typedef u32 sq_hpoint;
/* point on the rgb cube */
typedef u32 cb_point;
/* half-point on the rgb cube */
typedef u32 cb_hpoint;
/* make square point from x and y coordinates */
static sq_point sq_point_make(u32 x, u32 y)
{
return bf_compress(x, 0, x_bits) | bf_compress(y, x_bits, y_bits);
}
/* make square half point from x and y coordinates */
static sq_hpoint sq_hpoint_make(u32 x, u32 y)
{
return bf_compress(x >> 1, 0, x_bits - 1) |
bf_compress(y >> 1, x_bits - 1, y_bits - 1);
}
/* get x coordinate of square point */
static u32 sq_point_x(sq_point pt)
{
return bf_extract(pt, 0, x_bits);
}
/* get x coordinate of square half point */
static u32 sq_hpoint_x(sq_hpoint pt)
{
return bf_extract(pt, 0, x_bits - 1) << 1;
}
/* get y coordinate of square point */
static u32 sq_point_y(sq_point pt)
{
return bf_extract(pt, x_bits, y_bits);
}
/* get y coordinate of square half point */
static u32 sq_hpoint_y(sq_hpoint pt)
{
return bf_extract(pt, x_bits - 1, y_bits - 1) << 1;
}
/* add direction to square point */
static u32 sq_point_add_dir(sq_point pt, dir d)
{
int sign = sign_flag_to_int(dir_sign_flag(d));
return sq_point_make(sq_point_x(pt) + (dir_axis(d) == AXIS_X) * sign,
sq_point_y(pt) + (dir_axis(d) == AXIS_Y) * sign);
}
/* add direction to square half point */
static sq_hpoint sq_hpoint_add_dir(sq_hpoint pt, dir d)
{
int sign = sign_flag_to_int(dir_sign_flag(d));
return sq_hpoint_make(sq_hpoint_x(pt) + (dir_axis(d) == AXIS_X) * sign * 2,
sq_hpoint_y(pt) + (dir_axis(d) == AXIS_Y) * sign * 2);
}
/* get axis component of square half point */
static u32 sq_hpoint_get_axis(sq_hpoint pt, axis ax)
{
return (ax == AXIS_X) ? sq_hpoint_x(pt) : sq_hpoint_y(pt);
}
/* make cube point from r, g, and b coordinates */
static cb_point cb_point_make(u32 r, u32 g, u32 b)
{
return bf_compress(r, 0, r_bits) | bf_compress(g, r_bits, g_bits) |
bf_compress(b, r_bits + g_bits, b_bits);
}
/* make cube half point from r, g, and b coordinates */
static cb_hpoint cb_hpoint_make(u32 r, u32 g, u32 b)
{
return bf_compress(r >> 1, 0, r_bits - 1) |
bf_compress(g >> 1, r_bits - 1, g_bits - 1) |
bf_compress(b >> 1, (r_bits - 1 + g_bits - 1), b_bits - 1);
}
/* get r coordinate of cube point */
static u32 cb_point_r(cb_point pt)
{
return bf_extract(pt, 0, r_bits);
}
/* get r coordinate of cube half point */
static u32 cb_hpoint_r(cb_hpoint pt)
{
return bf_extract(pt, 0, r_bits - 1) << 1;
}
/* get g coordinate of cube point */
static u32 cb_point_g(cb_point pt)
{
return bf_extract(pt, r_bits, g_bits);
}
/* get g coordinate of cube half point */
static inline u32 cb_hpoint_g(cb_hpoint pt)
{
return bf_extract(pt, r_bits - 1, g_bits - 1) << 1;
}
/* get b coordinate of cube point */
static inline u32 cb_point_b(cb_point pt)
{
return bf_extract(pt, r_bits + g_bits, b_bits);
}
/* get b coordinate of cube half point */
static inline u32 cb_hpoint_b(cb_hpoint pt)
{
return bf_extract(pt, r_bits - 1 + g_bits - 1, b_bits - 1) << 1;
}
/* add direction to cube point */
static u32 cb_point_add_dir(cb_point pt, dir d)
{
int sign = sign_flag_to_int(dir_sign_flag(d));
return cb_point_make(cb_point_r(pt) + (dir_axis(d) == AXIS_X) * sign,
cb_point_g(pt) + (dir_axis(d) == AXIS_Y) * sign,
cb_point_b(pt) + (dir_axis(d) == AXIS_Z) * sign);
}
/* add direction to cube half point */
static u32 cb_hpoint_add_dir(cb_hpoint pt, dir d)
{
int sign = sign_flag_to_int(dir_sign_flag(d));
return cb_hpoint_make(cb_hpoint_r(pt) + (dir_axis(d) == AXIS_X) * sign * 2,
cb_hpoint_g(pt) + (dir_axis(d) == AXIS_Y) * sign * 2,
cb_hpoint_b(pt) + (dir_axis(d) == AXIS_Z) * sign * 2);
}
/* get axis component of cube half point */
static u32 cb_hpoint_get_axis(cb_hpoint pt, axis ax)
{
return (ax == AXIS_X) ? cb_hpoint_r(pt)
: (ax == AXIS_Y) ? cb_hpoint_g(pt)
: cb_hpoint_b(pt);
}
/* node id for MST generation purposes */
typedef u32 node_id;
typedef struct edge {
node_id from;
node_id to;
} edge;
/* make an edge going from 'from' to 'to' */
static edge edge_make(node_id from, node_id to)
{
edge out = {.from = from, .to = to};
return out;
}
/* mergesort edges weighted by weights */
static void edges_sort(edge *edges,
u32 *weights,
u32 from,
u32 to,
edge *edges_target,
u32 *weights_target)
{
if ((signed) to - from <= 1)
return;
u32 mid = (from + to) / 2;
edges_sort(edges_target, weights_target, from, mid, edges, weights);
edges_sort(edges_target, weights_target, mid, to, edges, weights);
u32 left = from;
u32 right = mid;
u32 i = left;
for (; i < to && left < mid && right < to; i++) {
if (weights[left] <= weights[right]) {
weights_target[i] = weights[left];
edges_target[i] = edges[left];
left++;
} else {
weights_target[i] = weights[right];
edges_target[i] = edges[right];
right++;
}
}
if (left < mid) {
memmove(&weights_target[i], &weights[left], (mid - left) * sizeof(u32));
memmove(&edges_target[i], &edges[left], (mid - left) * sizeof(edge));
} else if (right < to) {
memmove(&weights_target[i], &weights[right],
(to - right) * sizeof(u32));
memmove(&edges_target[i], &edges[right], (to - right) * sizeof(edge));
}
}
/* union-find acceleration datastructure */
typedef struct dsu {
node_id *parent;
u32 *rank;
} dsu;
/* initialize dsu */
void dsu_init(dsu *d, node_id max_node)
{
d->parent = malloc(sizeof(node_id) * max_node);
d->rank = malloc(sizeof(u32) * max_node);
assert(d->parent && d->rank);
for (node_id i = 0; i < max_node; i++)
d->parent[i] = i, d->rank[i] = 1;
}
/* destroy dsu */
void dsu_destroy(dsu *d)
{
free(d->parent);
free(d->rank);
}
/* find root of given node */
node_id dsu_find(dsu *d, node_id node)
{
node_id root = node;
#define DSU_JIT_METHOD 0
#if DSU_JIT_METHOD == 0
/* path compression */
while (d->parent[root] != root)
/* drill down the DSU to find the root node (representative set) */
root = d->parent[root];
while (d->parent[node] != root) {
/* shorten node->parent chains to accelerate subsequent lookups */
node_id parent = d->parent[node];
d->parent[node] = root;
node = parent;
}
#elif DSU_JIT_METHOD == 1
/* path splitting */
while (d->parent[root] != root) {
node_id parent = d->parent[root], grandparent = d->parent[parent];
d->parent[root] = parent, d->parent[parent] = grandparent;
root = parent;
}
#elif DSU_JIT_METHOD == 2
/* path halving */
while (d->parent[root] != root) {
node_id parent = d->parent[root], grandparent = d->parent[parent];
d->parent[parent] = grandparent;
d->parent[root] = grandparent;
root = grandparent;
}
#endif
return root;
}
/* union the representative sets of two root nodes */
void dsu_root_union(dsu *d, node_id root_x, node_id root_y)
{
/* for max efficiency we should never call this with root_x == root_y */
assert(root_x != root_y);
if (d->rank[root_x] < d->rank[root_y]) {
/* keep trees short by grafting larger trees onto smaller ones */
node_id temp = root_x;
root_x = root_y;
root_y = temp;
}
d->parent[root_y] = root_x;
if (d->rank[root_x] == d->rank[root_y])
d->rank[root_x] += 1;
}
/* Kruskal's Algorithm */
edge *kruskinate(u32 num_nodes, u32 num_edges, edge *edges, u32 *weights)
{
dsu d;
dsu_init(&d, num_nodes);
edge *edges_sorted = malloc(sizeof(edge) * num_edges);
u32 *weights_sorted = malloc(sizeof(u32) * num_edges);
edge *out_edges = malloc(sizeof(edge) * (num_nodes - 1));
assert(edges_sorted && weights_sorted && out_edges);
/* need to copy into edges_sorted/weights_sorted for base case */
memcpy(edges_sorted, edges, sizeof(edge) * num_edges);
memcpy(weights_sorted, weights, sizeof(u32) * num_edges);
edges_sort(edges, weights, 0, num_edges, edges_sorted, weights_sorted);
/* delete old edges */
free(edges);
free(weights);
u32 pop_idx = num_edges;
u32 tree_num_edges = 0;
u32 tree_max_edges = num_nodes - 1;
while (tree_num_edges != tree_max_edges) {
assert(pop_idx);
edge next_edge = edges_sorted[--pop_idx];
node_id root_a = dsu_find(&d, next_edge.from);
node_id root_b = dsu_find(&d, next_edge.to);
if (root_a != root_b) {
dsu_root_union(&d, root_a, root_b);
out_edges[tree_num_edges++] = next_edge;
}
}
dsu_destroy(&d);
free(edges_sorted);
free(weights_sorted);
return out_edges;
}
/* generate all initial square half point edges */
edge *sq_edges_make(u32 w, u32 h, u32 *out_num_edges)
{
assert(!(w % 2) && !(h % 2));
edge *out_edges = malloc(sizeof(edge) * ((w / 2) * (h / 2) * 2));
assert(out_edges);
u32 x, y;
*out_num_edges = 0;
for (y = 0; y < h; y += 2) {
for (x = 0; x < w; x += 2) {
sq_hpoint this_coord = sq_hpoint_make(x, y);
if (x)
/* create edge from (x - 2, y) -> (x, y) */
out_edges[(*out_num_edges)++] = edge_make(
sq_hpoint_add_dir(this_coord, DIR_NX), this_coord);
if (y)
/* create edge from (x, y - 2) -> (x, y) */
out_edges[(*out_num_edges)++] = edge_make(
sq_hpoint_add_dir(this_coord, DIR_NY), this_coord);
}
}
return out_edges;
}
/* generate all initial cube half point edges */
edge *make_cube_edges(u32 w, u32 h, u32 d, u32 *out_num_edges)
{
assert(!(w % 2) && !(h % 2) && !(d % 2));
edge *out_edges = malloc(sizeof(edge) * ((w / 2) * (h / 2) * (d / 2) * 3));
assert(out_edges);
u32 r, g, b;
*out_num_edges = 0;
for (b = 0; b < d; b += 2) {
for (g = 0; g < h; g += 2) {
for (r = 0; r < w; r += 2) {
u32 this_coord = cb_hpoint_make(r, g, b);
if (r)
/* create edge from (r - 2, g, b) -> (r, g, b) */
out_edges[(*out_num_edges)++] = edge_make(
cb_hpoint_add_dir(this_coord, DIR_NX), this_coord);
if (g)
/* create edge from (r, g - 2, b) -> (r, g, b) */
out_edges[(*out_num_edges)++] = edge_make(
cb_hpoint_add_dir(this_coord, DIR_NY), this_coord);
if (b)
/* create edge from (r, g, b - 2) -> (r, g, b) */
out_edges[(*out_num_edges)++] = edge_make(
cb_hpoint_add_dir(this_coord, DIR_NZ), this_coord);
}
}
}
return out_edges;
}
/* transform edge list into X/2 by Y/2 array of direction flags */
dir_flag *map_square_edges(u32 num_edges, const edge *edges)
{
dir_flag *dir_map = malloc(sizeof(u8) * pixels() / 4);
assert(dir_map);
memset(dir_map, 0, sizeof(u8) * pixels() / 4);
while (num_edges--) {
edge e = edges[num_edges];
dir_flag dir_mask = 0;
for (dir i = 0; i < 4; i++) {
if (e.to == sq_hpoint_add_dir(e.from, i)) {
dir_mask = dir_to_dir_flag(i);
break;
}
}
dir_map[e.from] |= dir_mask;
}
return dir_map;
}
/* transform edge list into R/2 by G/2 by B/2 array of direction flags */
dir_flag *map_cube_edges(u32 num_edges, const edge *edges)
{
dir_flag *dir_map = malloc(sizeof(u8) * colors() / 8);
assert(dir_map);
memset(dir_map, 0, sizeof(u8) * colors() / 8);
while (num_edges--) {
edge e = edges[num_edges];
dir_flag dir_mask = 0;
for (dir i = 0; i < 6; i++) {
if (e.to == cb_hpoint_add_dir(e.from, i)) {
dir_mask = dir_to_dir_flag(i);
break;
}
}
dir_map[e.from] |= dir_mask;
}
return dir_map;
}
/* given a starting point on the square, flip edges so that we end up with
* a tree rooted at that point rather than (0, 0).
*/
dir_flag *reorient_square_edges(dir_flag *dir_map, sq_hpoint start_idx)
{
sq_hpoint *stk = malloc(sizeof(u32) * pixels() / 4);
dir_flag *undir_map = malloc(sizeof(dir_flag) * pixels() / 4);
assert(stk && undir_map);
memset(undir_map, 0, sizeof(dir_flag) * pixels() / 4);
u32 stk_ptr = 0;
stk[stk_ptr++] = start_idx;
while (stk_ptr) {
sq_hpoint top = stk[--stk_ptr];
for (dir i = 0; i < 4; i++) {
u32 npos;
dir ndir;
if (sq_hpoint_get_axis(top, dir_axis(i)) ==
((dir_sign_flag(i) == SIGN_FLAG_POS)
? axis_span_square(dir_axis(i)) - 1
: 0))
continue;
if (dir_map[npos = sq_hpoint_add_dir(top, i)] &
(ndir = dir_to_dir_flag(dir_invert(i))))
dir_map[npos] &= ~ndir, undir_map[top] |= dir_to_dir_flag(i),
stk[stk_ptr++] = npos;
}
for (dir i = 0; i < 4; i++) {
dir d_flag;
if (dir_map[top] & (d_flag = dir_to_dir_flag(i)))
dir_map[top] &= ~d_flag, undir_map[top] |= d_flag,
stk[stk_ptr++] = sq_hpoint_add_dir(top, i);
}
}
free(dir_map);
free(stk);
return undir_map;
}
/* given a starting point on the cube, flip edges so that we end up with a tree
* rooted at that point rather than (0, 0, 0).
*/
dir_flag *reorient_cube_edges(dir_flag *dir_map, cb_hpoint start_idx)
{
cb_hpoint *stk = malloc(sizeof(u32) * colors() / 8);
dir_flag *undir_map = malloc(sizeof(dir_flag) * colors() / 8);
assert(stk && undir_map);
memset(undir_map, 0, sizeof(dir_flag) * colors() / 8);
u32 stk_ptr = 0;
stk[stk_ptr++] = start_idx;
while (stk_ptr) {
cb_hpoint top = stk[--stk_ptr];
for (dir i = 0; i < 6; i++) {
u32 npos;
dir ndir;
if (cb_hpoint_get_axis(top, dir_axis(i)) ==
((dir_sign_flag(i) == SIGN_FLAG_POS)
? axis_span_cube(dir_axis(i)) - 1
: 0))
continue;
if (dir_map[npos = cb_hpoint_add_dir(top, i)] &
(ndir = dir_to_dir_flag(dir_invert(i))))
dir_map[npos] &= ~ndir, undir_map[top] |= dir_to_dir_flag(i),
stk[stk_ptr++] = npos;
}
for (dir i = 0; i < 6; i++) {
dir d_flag;
if (dir_map[top] & (d_flag = dir_to_dir_flag(i)))
dir_map[top] &= ~d_flag, undir_map[top] |= d_flag,
stk[stk_ptr++] = cb_hpoint_add_dir(top, i);
}
}
free(dir_map);
free(stk);
return undir_map;
}
typedef u8 *gray3;
/* invert 'mask' bits in every element of 'g' */
void gray3_invert(gray3 g, axis_flag mask)
{
for (int i = 0; i < 8; i++)
g[i] = ((~g[i] & mask) | (g[i] & ~mask)) & 7;
}
/* swap single bits 'a_mask' and 'b_mask' in every element of 'g' */
void gray3_swap(gray3 g, axis_flag a_mask, axis_flag b_mask)
{
u8 others = ~(a_mask | b_mask);
for (int i = 0; i < 8; i++) {
g[i] = (g[i] & others) | (!!(g[i] & a_mask) * b_mask) |
(!!(g[i] & b_mask) * a_mask);
}
}
/* popcount of point on gray cube */
static inline u8 popcount_3(axis_flag point)
{
return !!(point & 1) + !!(point & 2) + !!(point & 4);
}
/* find direction with fewest nonzero amount of remaining splice locations */
dir dir_argmin(u32 packed_axis_count)
{
u8 min = 4;
dir d = 0;
for (dir i = 0; i < 6; i++) {
u8 num_remaining_splices = packed_axis_count & ((1 << 2) - 1);
if (num_remaining_splices && num_remaining_splices < min)
min = num_remaining_splices, d = i;
packed_axis_count >>= 2;
}
return d;
}
/* given bitset of out-edges, and index of in-edge, compute a gray code that
* visits all four positions on the unit square, and additionally the direction
* for each of those positions.
*/
void grayinate_2(dir_flag child_set,
dir dir_out,
dir *out_dirs,
axis_flag *out_gray)
{
/* base 2-bit gray code 00 01 11 10 */
const axis_flag gray[4] = {0, 1, 3, 2};
/* base direction for each pair of the above code */
const dir dirs[4] = {DIR_PX, DIR_PY, DIR_NX, DIR_NY};
/* inverse of the above table */
const u8 dir_to_idx[4] = {1, 3, 2, 0};
/* copy base directions to out directoins */
for (dir i = 0; i < 4; i++)
out_dirs[i] = dirs[i];
/* if this isn't the root square, we have an output direction */
if (dir_out < 6)
out_dirs[dir_to_idx[dir_out]] = dir_out;
/* set directions of relevant out-edges */
for (dir i = 0; i < 4; i++) {
if (child_set & dir_to_dir_flag(i))
out_dirs[dir_to_idx[i]] = i;
out_gray[i] = gray[i];
}
}
/* given bitset of out-edges, and index of in-edge, compute a gray code that
* visits all eight positions on the unit cube, and additionally the direction
* for each of those positions.
* Also, the gray code must start and end at given points on the cube.
*/
void grayinate_3(axis_flag start_point,
axis_flag end_point,
dir_flag child_set,
dir dir_out,
dir *out_dirs,
u8 *out_gray)
{
u8 gray[8] = {0, 1, 3, 2, 6, 7, 5, 4}, start_pc, orig_child_set = child_set;
assert(child_set < (1 << 6));
/* 1. Generate a gray code that visits all positions on the unit cube. */
if ((start_pc = popcount_3(start_point)) > popcount_3(end_point))
/* Inverting the gray code will flip the popcounts in favor of
* start_point.
*/
gray3_invert(gray, 7);
for (int i = 1; popcount_3(gray[0]) != start_pc; i <<= 1) {
/* Invert bits until popcount equals that of start_pc. */
if ((gray[0] & i) == (gray[7] & i))
gray3_invert(gray, i);
}
for (int i = 1; i < 4; i <<= 1) {
for (int j = i << 1; j < 8; j <<= 1) {
/* Swap bits until the start point of the gray code matches the
* input start point.
*/
if (((gray[0] & i) != (start_point & i)) &&
(gray[0] & j) != (start_point & j))
gray3_swap(gray, i, j);
/* swap bits until the end point matches the input end point. */
else if (((gray[7] & i) != (end_point & i)) &&
(gray[7] & j) != (end_point & j))
gray3_swap(gray, i, j);
}
}
/* 2. Figure out how to assign directions. */
u8 dirs[8] = {0, 0, 0, 0, 0, 0, 0, 0};
for (int i = 0; i < 8; i++) {
/* Build initial direction vectors by diffing pairs of gray points. */
u8 a = gray[i], b = gray[(i + 1) & 7];
u8 diff = a ^ b;
u8 sign = !(b & diff); /* 0 = pos, 1 = neg */
dirs[i] = !!(diff & 1) * DIR_PX + !!(diff & 2) * DIR_PY +
!!(diff & 4) * DIR_PZ + sign;
}
/* Build axis count and axis validity sets. */
u64 axis_count = 0, axis;
u64 dir_axis_set[8] = {0, 0, 0, 0, 0, 0, 0, 0};
for (int i = 0; i < 8; i++) {
u8 dir = dirs[i], point = gray[i], inv = dir_invert(dir);
for (axis = 0; axis < 3; axis++) {
u8 sgn = !((1 << axis) & point);
u8 compat_dir = dir_make(sgn, axis);
if (compat_dir != inv)
dir_axis_set[i] |= 1 << (2 * compat_dir);
}
axis_count += dir_axis_set[i];
}
if (dir_out < 6) {
axis_count -= dir_axis_set[7]; /* splice out end */
dir_axis_set[7] = 0;
dirs[7] = dir_out;
for (int k = 0; k < 8; k++) {
/* invalidate other dirs */
dir_axis_set[k] &= ~(3 << (2 * dir_out));
}
}
for (int i = 0; i < 6 && child_set; i++) {
u8 current_dir = dir_argmin(axis_count);
u8 current_dir_flag = dir_to_dir_flag(current_dir);
u64 dir_mask = 3 << (2 * current_dir), dir_mask_inv = ~dir_mask;
if (current_dir_flag & child_set) {
for (int j = 0; j < 8; j++) {
if (dir_axis_set[j] &
dir_mask) { /* found matching point, splice out */
axis_count -= dir_axis_set[j];
axis_count &= dir_mask_inv;
dir_axis_set[j] = 0;
dirs[j] = current_dir;
for (int k = 0; k < 8; k++) {
/* invalidate other dirs */
dir_axis_set[k] &= dir_mask_inv;
}
break;
}
}
child_set &= ~current_dir_flag;
} else {
/* we don't care about this dir */
for (int k = 0; k < 8; k++)
dir_axis_set[k] &= dir_mask_inv;
axis_count &= dir_mask_inv;
}
}
for (int i = 0; i < 8; i++) {
out_dirs[i] = dirs[i];
out_gray[i] = gray[i];
assert(gray[i] < 8 && dirs[i] < 6);
}
u8 check_ = orig_child_set | ((dir_out < 6) ? dir_to_dir_flag(dir_out) : 0);
for (int j = 0; j < 8; j++) {
u8 d = out_dirs[j];
for (axis = 0; axis < 3; axis++) {
if (d == dir_make(!(gray[j] & (1 << axis)), axis)) {
assert((gray[(j + 1) % 8] ^ gray[j]) != (1 << axis));
assert(check_ & (1 << d));
check_ ^= 1 << d;
}
}
}
if (dir_out < 6)
assert(dirs[7] == dir_out);
assert(!check_);
}
u8 *resolve_edges_2(u32 num_nodes, const u8 *dir_map, u32 start_idx)
{
u32 *stk = malloc(sizeof(u32) * num_nodes);
u8 *dir_out_stk = malloc(sizeof(u8) * num_nodes);
u8 *out = malloc(sizeof(u8) * num_nodes * 4);
assert(stk && dir_out_stk && out);
memset(out, 6, sizeof(u8) * num_nodes * 4);
u32 stk_ptr = 0;
dir_out_stk[stk_ptr] = 6;
stk[stk_ptr++] = start_idx;
while (stk_ptr) {
u32 top = stk[stk_ptr - 1];
u8 dir = dir_map[top], dirs[4], dir_out = dir_out_stk[stk_ptr - 1],
gray[4];
stk_ptr--;
grayinate_2(dir, dir_out, dirs, gray);
u32 idx = sq_point_make(sq_hpoint_x(top), sq_hpoint_y(top));
for (u32 i = 0; i < 4; i++) {
u8 gray_point = gray[i];
u32 out_idx = sq_point_make(sq_point_x(idx) + (gray_point & 1),
sq_point_y(idx) + !!(gray_point & 2));
assert(out[out_idx] == 6);
out[out_idx] = dirs[i];
}
for (u32 i = 0; i < 4; i++) {
if (dir & dir_to_dir_flag(i)) {
dir_out_stk[stk_ptr] = dir_invert(i);
stk[stk_ptr++] = sq_hpoint_add_dir(top, i);
}
}
}
free(dir_out_stk);
free(stk);
return out;
}
u8 *resolve_edges_3(u32 num_nodes, const u8 *dir_map, u32 start_idx)
{
u32 *stk = malloc(sizeof(u32) * num_nodes);
u8 *dir_out_stk = malloc(sizeof(u8) * num_nodes);
u8 *start_point_stk = malloc(sizeof(u8) * num_nodes);
u8 *end_point_stk = malloc(sizeof(u8) * num_nodes);
u8 *out = malloc(sizeof(u8) * num_nodes * 8);
assert(stk && dir_out_stk && start_point_stk && end_point_stk && out);
memset(out, 7, sizeof(u8) * num_nodes * 8);
u32 stk_ptr = 0;
/* u32 idxidx = 0; */
dir_out_stk[stk_ptr] = 6;
start_point_stk[stk_ptr] = 0;
end_point_stk[stk_ptr] = 1;
stk[stk_ptr++] = start_idx;
while (stk_ptr) {
u32 top = stk[stk_ptr - 1];
u8 dir = dir_map[top], dirs[8], dir_out = dir_out_stk[stk_ptr - 1],
gray[8];
u8 start_point = start_point_stk[stk_ptr - 1],
end_point = end_point_stk[stk_ptr - 1];
stk_ptr--;
grayinate_3(start_point, end_point, dir, dir_out, dirs, gray);
u32 idx =
cb_point_make(cb_hpoint_r(top), cb_hpoint_g(top), cb_hpoint_b(top));
for (u32 i = 0; i < 8; i++) {
u8 gray_point = gray[i];
assert(dirs[i] < 6);
u32 out_idx = cb_point_make(cb_point_r(idx) + (gray_point & 1),
cb_point_g(idx) + !!(gray_point & 2),
cb_point_b(idx) + !!(gray_point & 4));
assert(out[out_idx] == 7);
out[out_idx] = dirs[i];
u8 dir_mask = (1 << (dirs[i] >> 1));
if (((top == start_idx) || i < 7) &&
!!(gray_point & dir_mask) ^ (dirs[i] & 1)) {
start_point_stk[stk_ptr] = gray_point ^ dir_mask;
end_point_stk[stk_ptr] = gray[(i + 1) % 8] ^ dir_mask;
dir_out_stk[stk_ptr] = dir_invert(dirs[i]);
stk[stk_ptr++] = cb_hpoint_add_dir(top, dirs[i]);
}
}
}
free(dir_out_stk);
free(stk);
free(start_point_stk);
free(end_point_stk);
return out;
}
typedef struct {
uint64_t state;
uint64_t inc;
} pcg32_random_t;
uint32_t pcg32_random_r(pcg32_random_t *rng)
{
uint64_t oldstate = rng->state;
/* Advance internal state */
rng->state = oldstate * 6364136223846793005ULL + (rng->inc | 1);
/* Calculate output function (XSH RR), uses old state for max ILP */
uint32_t xorshifted = ((oldstate >> 18u) ^ oldstate) >> 27u;
uint32_t rot = oldstate >> 59u;
return (xorshifted >> rot) | (xorshifted << ((-rot) & 31));
}
static pcg32_random_t rng_state = {0xDEADBEEF, 1};
uint32_t rng(void)
{
return pcg32_random_r(&rng_state);
}
typedef u32 (*weight_func)(edge *e);
u32 *make_edge_weights(u32 num_edges, edge *edges, weight_func func)
{
u32 *out = malloc(sizeof(u32) * num_edges);
assert(out);
for (u32 i = 0; i < num_edges; i++)
out[i] = func(edges + i);
return out;
}
u32 rng_weight_func(edge *e)
{
if (rng() & 1) {
u32 temp = e->from;
e->from = e->to;
e->to = temp;
}
return rng();
}
/* ensure that all colors are present */
static bool check = false;
u8 *bmp_new(u32 num_elements)
{
u8 *out = calloc((num_elements + 7) / 8, 1);
return out;
}
static inline void bmp_set(u8 *bmp, u32 idx, int v)
{
u8 mask = 1 << (idx & 7);
bmp[idx / 8] = (bmp[idx / 8] & ~mask) | (v * mask);
}
static inline bool bmp_get(const u8 *bmp, u32 idx)
{
return (bool) (bmp[idx / 8] & (1 << (idx & 7)));
}