|
| 1 | +<?xml version="1.0"?> |
| 2 | +<PMML version="4.1" xmlns="http://www.dmg.org/PMML-4_1" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.dmg.org/PMML-4_1 http://www.dmg.org/v4-1/pmml-4-1.xsd"> |
| 3 | + <Header copyright="Copyright (c) 2016 Syncfusion" description="Generalized Linear Regression Model"> |
| 4 | + <Extension name="user" value="Syncfusion" extender="Rattle/PMML"/> |
| 5 | + <Application name="Rattle/PMML" version="1.4"/> |
| 6 | + <Timestamp>2014-10-27 21:35:09</Timestamp> |
| 7 | + </Header> |
| 8 | + <DataDictionary numberOfFields="10"> |
| 9 | + <DataField name="Adjusted" optype="categorical" dataType="string"> |
| 10 | + <Value value="0"/> |
| 11 | + <Value value="1"/> |
| 12 | + </DataField> |
| 13 | + <DataField name="Age" optype="continuous" dataType="double"/> |
| 14 | + <DataField name="Employment" optype="categorical" dataType="string"> |
| 15 | + <Value value="Consultant"/> |
| 16 | + <Value value="Private"/> |
| 17 | + <Value value="PSFederal"/> |
| 18 | + <Value value="PSLocal"/> |
| 19 | + <Value value="PSState"/> |
| 20 | + <Value value="SelfEmp"/> |
| 21 | + <Value value="Volunteer"/> |
| 22 | + </DataField> |
| 23 | + <DataField name="Education" optype="categorical" dataType="string"> |
| 24 | + <Value value="Associate"/> |
| 25 | + <Value value="Bachelor"/> |
| 26 | + <Value value="College"/> |
| 27 | + <Value value="Doctorate"/> |
| 28 | + <Value value="HSgrad"/> |
| 29 | + <Value value="Master"/> |
| 30 | + <Value value="Preschool"/> |
| 31 | + <Value value="Professional"/> |
| 32 | + <Value value="Vocational"/> |
| 33 | + <Value value="Yr10"/> |
| 34 | + <Value value="Yr11"/> |
| 35 | + <Value value="Yr12"/> |
| 36 | + <Value value="Yr1t4"/> |
| 37 | + <Value value="Yr5t6"/> |
| 38 | + <Value value="Yr7t8"/> |
| 39 | + <Value value="Yr9"/> |
| 40 | + </DataField> |
| 41 | + <DataField name="Marital" optype="categorical" dataType="string"> |
| 42 | + <Value value="Absent"/> |
| 43 | + <Value value="Divorced"/> |
| 44 | + <Value value="Married"/> |
| 45 | + <Value value="Married-spouse-absent"/> |
| 46 | + <Value value="Unmarried"/> |
| 47 | + <Value value="Widowed"/> |
| 48 | + </DataField> |
| 49 | + <DataField name="Occupation" optype="categorical" dataType="string"> |
| 50 | + <Value value="Cleaner"/> |
| 51 | + <Value value="Clerical"/> |
| 52 | + <Value value="Executive"/> |
| 53 | + <Value value="Farming"/> |
| 54 | + <Value value="Home"/> |
| 55 | + <Value value="Machinist"/> |
| 56 | + <Value value="Military"/> |
| 57 | + <Value value="Professional"/> |
| 58 | + <Value value="Protective"/> |
| 59 | + <Value value="Repair"/> |
| 60 | + <Value value="Sales"/> |
| 61 | + <Value value="Service"/> |
| 62 | + <Value value="Support"/> |
| 63 | + <Value value="Transport"/> |
| 64 | + </DataField> |
| 65 | + <DataField name="Income" optype="continuous" dataType="double"/> |
| 66 | + <DataField name="Sex" optype="categorical" dataType="string"> |
| 67 | + <Value value="Female"/> |
| 68 | + <Value value="Male"/> |
| 69 | + </DataField> |
| 70 | + <DataField name="Deductions" optype="continuous" dataType="double"/> |
| 71 | + <DataField name="Hours" optype="continuous" dataType="double"/> |
| 72 | + </DataDictionary> |
| 73 | + <GeneralRegressionModel modelName="General_Regression_Model" modelType="generalizedLinear" functionName="classification" algorithmName="glm" distribution="binomial" linkFunction="logit"> |
| 74 | + <MiningSchema> |
| 75 | + <MiningField name="Adjusted" usageType="predicted"/> |
| 76 | + <MiningField name="Age" usageType="active"/> |
| 77 | + <MiningField name="Employment" usageType="active"/> |
| 78 | + <MiningField name="Education" usageType="active"/> |
| 79 | + <MiningField name="Marital" usageType="active"/> |
| 80 | + <MiningField name="Occupation" usageType="active"/> |
| 81 | + <MiningField name="Income" usageType="active"/> |
| 82 | + <MiningField name="Sex" usageType="active"/> |
| 83 | + <MiningField name="Deductions" usageType="active"/> |
| 84 | + <MiningField name="Hours" usageType="active"/> |
| 85 | + </MiningSchema> |
| 86 | + <Output> |
| 87 | + <OutputField name="Probability_1" targetField="Adjusted" feature="probability" value="1"/> |
| 88 | + <OutputField name="Predicted_Adjusted" feature="predictedValue"/> |
| 89 | + </Output> |
| 90 | + <ParameterList> |
| 91 | + <Parameter name="p0" label="(Intercept)"/> |
| 92 | + <Parameter name="p1" label="Age"/> |
| 93 | + <Parameter name="p2" label="EmploymentPrivate"/> |
| 94 | + <Parameter name="p3" label="EmploymentPSFederal"/> |
| 95 | + <Parameter name="p4" label="EmploymentPSLocal"/> |
| 96 | + <Parameter name="p5" label="EmploymentPSState"/> |
| 97 | + <Parameter name="p6" label="EmploymentSelfEmp"/> |
| 98 | + <Parameter name="p7" label="EmploymentVolunteer"/> |
| 99 | + <Parameter name="p8" label="EducationBachelor"/> |
| 100 | + <Parameter name="p9" label="EducationCollege"/> |
| 101 | + <Parameter name="p10" label="EducationDoctorate"/> |
| 102 | + <Parameter name="p11" label="EducationHSgrad"/> |
| 103 | + <Parameter name="p12" label="EducationMaster"/> |
| 104 | + <Parameter name="p13" label="EducationPreschool"/> |
| 105 | + <Parameter name="p14" label="EducationProfessional"/> |
| 106 | + <Parameter name="p15" label="EducationVocational"/> |
| 107 | + <Parameter name="p16" label="EducationYr10"/> |
| 108 | + <Parameter name="p17" label="EducationYr11"/> |
| 109 | + <Parameter name="p18" label="EducationYr12"/> |
| 110 | + <Parameter name="p19" label="EducationYr1t4"/> |
| 111 | + <Parameter name="p20" label="EducationYr5t6"/> |
| 112 | + <Parameter name="p21" label="EducationYr7t8"/> |
| 113 | + <Parameter name="p22" label="EducationYr9"/> |
| 114 | + <Parameter name="p23" label="MaritalDivorced"/> |
| 115 | + <Parameter name="p24" label="MaritalMarried"/> |
| 116 | + <Parameter name="p25" label="MaritalMarried-spouse-absent"/> |
| 117 | + <Parameter name="p26" label="MaritalUnmarried"/> |
| 118 | + <Parameter name="p27" label="MaritalWidowed"/> |
| 119 | + <Parameter name="p28" label="OccupationClerical"/> |
| 120 | + <Parameter name="p29" label="OccupationExecutive"/> |
| 121 | + <Parameter name="p30" label="OccupationFarming"/> |
| 122 | + <Parameter name="p31" label="OccupationHome"/> |
| 123 | + <Parameter name="p32" label="OccupationMachinist"/> |
| 124 | + <Parameter name="p33" label="OccupationMilitary"/> |
| 125 | + <Parameter name="p34" label="OccupationProfessional"/> |
| 126 | + <Parameter name="p35" label="OccupationProtective"/> |
| 127 | + <Parameter name="p36" label="OccupationRepair"/> |
| 128 | + <Parameter name="p37" label="OccupationSales"/> |
| 129 | + <Parameter name="p38" label="OccupationService"/> |
| 130 | + <Parameter name="p39" label="OccupationSupport"/> |
| 131 | + <Parameter name="p40" label="OccupationTransport"/> |
| 132 | + <Parameter name="p41" label="Income"/> |
| 133 | + <Parameter name="p42" label="SexMale"/> |
| 134 | + <Parameter name="p43" label="Deductions"/> |
| 135 | + <Parameter name="p44" label="Hours"/> |
| 136 | + </ParameterList> |
| 137 | + <FactorList> |
| 138 | + <Predictor name="Employment"/> |
| 139 | + <Predictor name="Education"/> |
| 140 | + <Predictor name="Marital"/> |
| 141 | + <Predictor name="Occupation"/> |
| 142 | + <Predictor name="Sex"/> |
| 143 | + </FactorList> |
| 144 | + <CovariateList> |
| 145 | + <Predictor name="Age"/> |
| 146 | + <Predictor name="Income"/> |
| 147 | + <Predictor name="Deductions"/> |
| 148 | + <Predictor name="Hours"/> |
| 149 | + </CovariateList> |
| 150 | + <PPMatrix> |
| 151 | + <PPCell value="1" predictorName="Age" parameterName="p1"/> |
| 152 | + <PPCell value="Private" predictorName="Employment" parameterName="p2"/> |
| 153 | + <PPCell value="PSFederal" predictorName="Employment" parameterName="p3"/> |
| 154 | + <PPCell value="PSLocal" predictorName="Employment" parameterName="p4"/> |
| 155 | + <PPCell value="PSState" predictorName="Employment" parameterName="p5"/> |
| 156 | + <PPCell value="SelfEmp" predictorName="Employment" parameterName="p6"/> |
| 157 | + <PPCell value="Volunteer" predictorName="Employment" parameterName="p7"/> |
| 158 | + <PPCell value="Bachelor" predictorName="Education" parameterName="p8"/> |
| 159 | + <PPCell value="College" predictorName="Education" parameterName="p9"/> |
| 160 | + <PPCell value="Doctorate" predictorName="Education" parameterName="p10"/> |
| 161 | + <PPCell value="HSgrad" predictorName="Education" parameterName="p11"/> |
| 162 | + <PPCell value="Master" predictorName="Education" parameterName="p12"/> |
| 163 | + <PPCell value="Preschool" predictorName="Education" parameterName="p13"/> |
| 164 | + <PPCell value="Professional" predictorName="Education" parameterName="p14"/> |
| 165 | + <PPCell value="Vocational" predictorName="Education" parameterName="p15"/> |
| 166 | + <PPCell value="Yr10" predictorName="Education" parameterName="p16"/> |
| 167 | + <PPCell value="Yr11" predictorName="Education" parameterName="p17"/> |
| 168 | + <PPCell value="Yr12" predictorName="Education" parameterName="p18"/> |
| 169 | + <PPCell value="Yr1t4" predictorName="Education" parameterName="p19"/> |
| 170 | + <PPCell value="Yr5t6" predictorName="Education" parameterName="p20"/> |
| 171 | + <PPCell value="Yr7t8" predictorName="Education" parameterName="p21"/> |
| 172 | + <PPCell value="Yr9" predictorName="Education" parameterName="p22"/> |
| 173 | + <PPCell value="Divorced" predictorName="Marital" parameterName="p23"/> |
| 174 | + <PPCell value="Married" predictorName="Marital" parameterName="p24"/> |
| 175 | + <PPCell value="Married-spouse-absent" predictorName="Marital" parameterName="p25"/> |
| 176 | + <PPCell value="Unmarried" predictorName="Marital" parameterName="p26"/> |
| 177 | + <PPCell value="Widowed" predictorName="Marital" parameterName="p27"/> |
| 178 | + <PPCell value="Clerical" predictorName="Occupation" parameterName="p28"/> |
| 179 | + <PPCell value="Executive" predictorName="Occupation" parameterName="p29"/> |
| 180 | + <PPCell value="Farming" predictorName="Occupation" parameterName="p30"/> |
| 181 | + <PPCell value="Home" predictorName="Occupation" parameterName="p31"/> |
| 182 | + <PPCell value="Machinist" predictorName="Occupation" parameterName="p32"/> |
| 183 | + <PPCell value="Military" predictorName="Occupation" parameterName="p33"/> |
| 184 | + <PPCell value="Professional" predictorName="Occupation" parameterName="p34"/> |
| 185 | + <PPCell value="Protective" predictorName="Occupation" parameterName="p35"/> |
| 186 | + <PPCell value="Repair" predictorName="Occupation" parameterName="p36"/> |
| 187 | + <PPCell value="Sales" predictorName="Occupation" parameterName="p37"/> |
| 188 | + <PPCell value="Service" predictorName="Occupation" parameterName="p38"/> |
| 189 | + <PPCell value="Support" predictorName="Occupation" parameterName="p39"/> |
| 190 | + <PPCell value="Transport" predictorName="Occupation" parameterName="p40"/> |
| 191 | + <PPCell value="1" predictorName="Income" parameterName="p41"/> |
| 192 | + <PPCell value="Male" predictorName="Sex" parameterName="p42"/> |
| 193 | + <PPCell value="1" predictorName="Deductions" parameterName="p43"/> |
| 194 | + <PPCell value="1" predictorName="Hours" parameterName="p44"/> |
| 195 | + </PPMatrix> |
| 196 | + <ParamMatrix> |
| 197 | + <PCell targetCategory="1" parameterName="p0" df="1" beta="-19.0512311557632"/> |
| 198 | + <PCell targetCategory="1" parameterName="p1" df="1" beta="0.075726911048706"/> |
| 199 | + <PCell targetCategory="1" parameterName="p2" df="1" beta="1.43831815843203"/> |
| 200 | + <PCell targetCategory="1" parameterName="p3" df="1" beta="1.04187271030125"/> |
| 201 | + <PCell targetCategory="1" parameterName="p4" df="1" beta="2.18509491460412"/> |
| 202 | + <PCell targetCategory="1" parameterName="p5" df="1" beta="2.36242522191441"/> |
| 203 | + <PCell targetCategory="1" parameterName="p6" df="1" beta="2.41549967793905"/> |
| 204 | + <PCell targetCategory="1" parameterName="p7" df="1" beta="-19.4749928768188"/> |
| 205 | + <PCell targetCategory="1" parameterName="p8" df="1" beta="1.12283015865936"/> |
| 206 | + <PCell targetCategory="1" parameterName="p9" df="1" beta="-1.89361007110018"/> |
| 207 | + <PCell targetCategory="1" parameterName="p10" df="1" beta="1.57020518604853"/> |
| 208 | + <PCell targetCategory="1" parameterName="p11" df="1" beta="-2.73002756232943"/> |
| 209 | + <PCell targetCategory="1" parameterName="p12" df="1" beta="1.2898200522878"/> |
| 210 | + <PCell targetCategory="1" parameterName="p13" df="1" beta="-7.93721231715274"/> |
| 211 | + <PCell targetCategory="1" parameterName="p14" df="1" beta="4.59962575443365"/> |
| 212 | + <PCell targetCategory="1" parameterName="p15" df="1" beta="-0.986952219485652"/> |
| 213 | + <PCell targetCategory="1" parameterName="p16" df="1" beta="-2.50784150068362"/> |
| 214 | + <PCell targetCategory="1" parameterName="p17" df="1" beta="-18.1209697131631"/> |
| 215 | + <PCell targetCategory="1" parameterName="p18" df="1" beta="0.615444490416363"/> |
| 216 | + <PCell targetCategory="1" parameterName="p19" df="1" beta="-17.5427521818256"/> |
| 217 | + <PCell targetCategory="1" parameterName="p20" df="1" beta="-19.1736438366972"/> |
| 218 | + <PCell targetCategory="1" parameterName="p21" df="1" beta="-18.0725495427808"/> |
| 219 | + <PCell targetCategory="1" parameterName="p22" df="1" beta="-21.757725674741"/> |
| 220 | + <PCell targetCategory="1" parameterName="p23" df="1" beta="-1.16475957072301"/> |
| 221 | + <PCell targetCategory="1" parameterName="p24" df="1" beta="8.05419576996065"/> |
| 222 | + <PCell targetCategory="1" parameterName="p25" df="1" beta="-15.1025547022836"/> |
| 223 | + <PCell targetCategory="1" parameterName="p26" df="1" beta="1.77527361047088"/> |
| 224 | + <PCell targetCategory="1" parameterName="p27" df="1" beta="-20.5712061493715"/> |
| 225 | + <PCell targetCategory="1" parameterName="p28" df="1" beta="3.02259726914247"/> |
| 226 | + <PCell targetCategory="1" parameterName="p29" df="1" beta="4.19697980240932"/> |
| 227 | + <PCell targetCategory="1" parameterName="p30" df="1" beta="-0.409395447627445"/> |
| 228 | + <PCell targetCategory="1" parameterName="p31" df="1" beta="-8.05078855816446"/> |
| 229 | + <PCell targetCategory="1" parameterName="p32" df="1" beta="-16.575268077579"/> |
| 230 | + <PCell targetCategory="1" parameterName="p33" df="1" beta="-7.37693144162072"/> |
| 231 | + <PCell targetCategory="1" parameterName="p34" df="1" beta="3.95284764238435"/> |
| 232 | + <PCell targetCategory="1" parameterName="p35" df="1" beta="2.06002957664734"/> |
| 233 | + <PCell targetCategory="1" parameterName="p36" df="1" beta="-0.380417515709989"/> |
| 234 | + <PCell targetCategory="1" parameterName="p37" df="1" beta="1.92682314784039"/> |
| 235 | + <PCell targetCategory="1" parameterName="p38" df="1" beta="-19.3088087916836"/> |
| 236 | + <PCell targetCategory="1" parameterName="p39" df="1" beta="3.28562714903697"/> |
| 237 | + <PCell targetCategory="1" parameterName="p40" df="1" beta="-1.00196024141903"/> |
| 238 | + <PCell targetCategory="1" parameterName="p41" df="1" beta="5.68138696845621e-06"/> |
| 239 | + <PCell targetCategory="1" parameterName="p42" df="1" beta="-0.434345888236885"/> |
| 240 | + <PCell targetCategory="1" parameterName="p43" df="1" beta="0.00357538705148108"/> |
| 241 | + <PCell targetCategory="1" parameterName="p44" df="1" beta="0.0952714459117653"/> |
| 242 | + </ParamMatrix> |
| 243 | + </GeneralRegressionModel> |
| 244 | +</PMML> |
0 commit comments