@@ -124,7 +124,7 @@ Advanced Example with Multiple Agents
124124 mistral_embeddings :
125125 platform : ' ai.platform.mistral'
126126 model : ' mistral-embed'
127- indexer :
127+ ingester :
128128 default :
129129 loader : ' Symfony\AI\Store\Document\Loader\InMemoryLoader'
130130 vectorizer : ' ai.vectorizer.openai_embeddings'
@@ -721,26 +721,26 @@ The ``ai:store:drop`` command drops the infrastructure for a store (e.g., remove
721721 This command only works with stores that implement ``ManagedStoreInterface ``.
722722 Not all store types support drop operations.
723723
724- ``ai:store:index ``
725- ~~~~~~~~~~~~~~~~~~
724+ ``ai:store:ingest ``
725+ ~~~~~~~~~~~~~~~~~~~
726726
727- The ``ai:store:index `` command indexes documents into a store using a configured indexer .
727+ The ``ai:store:ingest `` command ingests documents into a store using a configured ingester .
728728
729729.. code-block :: terminal
730730
731- $ php bin/console ai:store:index <indexer >
731+ $ php bin/console ai:store:ingest <ingester >
732732
733- # Index using the default indexer
734- $ php bin/console ai:store:index default
733+ # Ingest using the default ingester
734+ $ php bin/console ai:store:ingest default
735735
736736 # Override the configured source with a single file
737- $ php bin/console ai:store:index blog --source=/path/to/file.txt
737+ $ php bin/console ai:store:ingest blog --source=/path/to/file.txt
738738
739739 # Override with multiple sources
740- $ php bin/console ai:store:index blog --source=/path/to/file1.txt --source=/path/to/file2.txt
740+ $ php bin/console ai:store:ingest blog --source=/path/to/file1.txt --source=/path/to/file2.txt
741741
742- The ``--source `` (or ``-s ``) option allows you to override the source(s) configured in your indexer .
743- This is useful for ad-hoc indexing operations or testing different data sources.
742+ The ``--source `` (or ``-s ``) option allows you to override the source(s) configured in your ingester .
743+ This is useful for ad-hoc ingesting operations or testing different data sources.
744744
745745Usage
746746-----
@@ -935,7 +935,7 @@ Vectorizers
935935-----------
936936
937937Vectorizers are components that convert text documents into vector embeddings for storage and retrieval.
938- They can be configured once and reused across multiple indexers , providing better maintainability and consistency.
938+ They can be configured once and reused across multiple ingesters , providing better maintainability and consistency.
939939
940940Configuring Vectorizers
941941~~~~~~~~~~~~~~~~~~~~~~~
@@ -961,15 +961,15 @@ Vectorizers are defined in the ``vectorizer`` section of your configuration:
961961 platform : ' ai.platform.mistral'
962962 model : ' mistral-embed'
963963
964- Using Vectorizers in Indexers
965- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
964+ Using Vectorizers in Ingesters
965+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
966966
967- Once configured, vectorizers can be referenced by name in indexer configurations:
967+ Once configured, vectorizers can be referenced by name in ingester configurations:
968968
969969.. code-block :: yaml
970970
971971 ai :
972- indexer :
972+ ingester :
973973 documents :
974974 loader : ' Symfony\AI\Store\Document\Loader\TextFileLoader'
975975 vectorizer : ' ai.vectorizer.openai_small'
@@ -988,14 +988,14 @@ Once configured, vectorizers can be referenced by name in indexer configurations
988988 Benefits of Configured Vectorizers
989989~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
990990
991- * **Reusability **: Define once, use in multiple indexers
992- * **Consistency **: Ensure all indexers using the same vectorizer have identical embedding configuration
991+ * **Reusability **: Define once, use in multiple ingesters
992+ * **Consistency **: Ensure all ingesters using the same vectorizer have identical embedding configuration
993993* **Maintainability **: Change vectorizer settings in one place
994994
995995Retrievers
996996----------
997997
998- Retrievers are the opposite of indexers . While indexers populate a vector store with documents,
998+ Retrievers are the opposite of ingesters . While ingesters populate a vector store with documents,
999999retrievers allow you to search for documents in a store based on a query string.
10001000They vectorize the query and retrieve similar documents from the store.
10011001
0 commit comments