forked from llvm/llvm-project
-
Notifications
You must be signed in to change notification settings - Fork 339
/
Copy pathConstraintElimination.cpp
1900 lines (1662 loc) · 67.7 KB
/
ConstraintElimination.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Eliminate conditions based on constraints collected from dominating
// conditions.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar/ConstraintElimination.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/ConstraintSystem.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Verifier.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/DebugCounter.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/ValueMapper.h"
#include <cmath>
#include <optional>
#include <string>
using namespace llvm;
using namespace PatternMatch;
#define DEBUG_TYPE "constraint-elimination"
STATISTIC(NumCondsRemoved, "Number of instructions removed");
DEBUG_COUNTER(EliminatedCounter, "conds-eliminated",
"Controls which conditions are eliminated");
static cl::opt<unsigned>
MaxRows("constraint-elimination-max-rows", cl::init(500), cl::Hidden,
cl::desc("Maximum number of rows to keep in constraint system"));
static cl::opt<bool> DumpReproducers(
"constraint-elimination-dump-reproducers", cl::init(false), cl::Hidden,
cl::desc("Dump IR to reproduce successful transformations."));
static int64_t MaxConstraintValue = std::numeric_limits<int64_t>::max();
static int64_t MinSignedConstraintValue = std::numeric_limits<int64_t>::min();
// A helper to multiply 2 signed integers where overflowing is allowed.
static int64_t multiplyWithOverflow(int64_t A, int64_t B) {
int64_t Result;
MulOverflow(A, B, Result);
return Result;
}
// A helper to add 2 signed integers where overflowing is allowed.
static int64_t addWithOverflow(int64_t A, int64_t B) {
int64_t Result;
AddOverflow(A, B, Result);
return Result;
}
static Instruction *getContextInstForUse(Use &U) {
Instruction *UserI = cast<Instruction>(U.getUser());
if (auto *Phi = dyn_cast<PHINode>(UserI))
UserI = Phi->getIncomingBlock(U)->getTerminator();
return UserI;
}
namespace {
/// Struct to express a condition of the form %Op0 Pred %Op1.
struct ConditionTy {
CmpInst::Predicate Pred;
Value *Op0;
Value *Op1;
ConditionTy()
: Pred(CmpInst::BAD_ICMP_PREDICATE), Op0(nullptr), Op1(nullptr) {}
ConditionTy(CmpInst::Predicate Pred, Value *Op0, Value *Op1)
: Pred(Pred), Op0(Op0), Op1(Op1) {}
};
/// Represents either
/// * a condition that holds on entry to a block (=condition fact)
/// * an assume (=assume fact)
/// * a use of a compare instruction to simplify.
/// It also tracks the Dominator DFS in and out numbers for each entry.
struct FactOrCheck {
enum class EntryTy {
ConditionFact, /// A condition that holds on entry to a block.
InstFact, /// A fact that holds after Inst executed (e.g. an assume or
/// min/mix intrinsic.
InstCheck, /// An instruction to simplify (e.g. an overflow math
/// intrinsics).
UseCheck /// An use of a compare instruction to simplify.
};
union {
Instruction *Inst;
Use *U;
ConditionTy Cond;
};
/// A pre-condition that must hold for the current fact to be added to the
/// system.
ConditionTy DoesHold;
unsigned NumIn;
unsigned NumOut;
EntryTy Ty;
FactOrCheck(EntryTy Ty, DomTreeNode *DTN, Instruction *Inst)
: Inst(Inst), NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()),
Ty(Ty) {}
FactOrCheck(DomTreeNode *DTN, Use *U)
: U(U), DoesHold(CmpInst::BAD_ICMP_PREDICATE, nullptr, nullptr),
NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()),
Ty(EntryTy::UseCheck) {}
FactOrCheck(DomTreeNode *DTN, CmpInst::Predicate Pred, Value *Op0, Value *Op1,
ConditionTy Precond = ConditionTy())
: Cond(Pred, Op0, Op1), DoesHold(Precond), NumIn(DTN->getDFSNumIn()),
NumOut(DTN->getDFSNumOut()), Ty(EntryTy::ConditionFact) {}
static FactOrCheck getConditionFact(DomTreeNode *DTN, CmpInst::Predicate Pred,
Value *Op0, Value *Op1,
ConditionTy Precond = ConditionTy()) {
return FactOrCheck(DTN, Pred, Op0, Op1, Precond);
}
static FactOrCheck getInstFact(DomTreeNode *DTN, Instruction *Inst) {
return FactOrCheck(EntryTy::InstFact, DTN, Inst);
}
static FactOrCheck getCheck(DomTreeNode *DTN, Use *U) {
return FactOrCheck(DTN, U);
}
static FactOrCheck getCheck(DomTreeNode *DTN, CallInst *CI) {
return FactOrCheck(EntryTy::InstCheck, DTN, CI);
}
bool isCheck() const {
return Ty == EntryTy::InstCheck || Ty == EntryTy::UseCheck;
}
Instruction *getContextInst() const {
if (Ty == EntryTy::UseCheck)
return getContextInstForUse(*U);
return Inst;
}
Instruction *getInstructionToSimplify() const {
assert(isCheck());
if (Ty == EntryTy::InstCheck)
return Inst;
// The use may have been simplified to a constant already.
return dyn_cast<Instruction>(*U);
}
bool isConditionFact() const { return Ty == EntryTy::ConditionFact; }
};
/// Keep state required to build worklist.
struct State {
DominatorTree &DT;
LoopInfo &LI;
ScalarEvolution &SE;
SmallVector<FactOrCheck, 64> WorkList;
State(DominatorTree &DT, LoopInfo &LI, ScalarEvolution &SE)
: DT(DT), LI(LI), SE(SE) {}
/// Process block \p BB and add known facts to work-list.
void addInfoFor(BasicBlock &BB);
/// Try to add facts for loop inductions (AddRecs) in EQ/NE compares
/// controlling the loop header.
void addInfoForInductions(BasicBlock &BB);
/// Returns true if we can add a known condition from BB to its successor
/// block Succ.
bool canAddSuccessor(BasicBlock &BB, BasicBlock *Succ) const {
return DT.dominates(BasicBlockEdge(&BB, Succ), Succ);
}
};
class ConstraintInfo;
struct StackEntry {
unsigned NumIn;
unsigned NumOut;
bool IsSigned = false;
/// Variables that can be removed from the system once the stack entry gets
/// removed.
SmallVector<Value *, 2> ValuesToRelease;
StackEntry(unsigned NumIn, unsigned NumOut, bool IsSigned,
SmallVector<Value *, 2> ValuesToRelease)
: NumIn(NumIn), NumOut(NumOut), IsSigned(IsSigned),
ValuesToRelease(ValuesToRelease) {}
};
struct ConstraintTy {
SmallVector<int64_t, 8> Coefficients;
SmallVector<ConditionTy, 2> Preconditions;
SmallVector<SmallVector<int64_t, 8>> ExtraInfo;
bool IsSigned = false;
ConstraintTy() = default;
ConstraintTy(SmallVector<int64_t, 8> Coefficients, bool IsSigned, bool IsEq,
bool IsNe)
: Coefficients(std::move(Coefficients)), IsSigned(IsSigned), IsEq(IsEq),
IsNe(IsNe) {}
unsigned size() const { return Coefficients.size(); }
unsigned empty() const { return Coefficients.empty(); }
/// Returns true if all preconditions for this list of constraints are
/// satisfied given \p CS and the corresponding \p Value2Index mapping.
bool isValid(const ConstraintInfo &Info) const;
bool isEq() const { return IsEq; }
bool isNe() const { return IsNe; }
/// Check if the current constraint is implied by the given ConstraintSystem.
///
/// \return true or false if the constraint is proven to be respectively true,
/// or false. When the constraint cannot be proven to be either true or false,
/// std::nullopt is returned.
std::optional<bool> isImpliedBy(const ConstraintSystem &CS) const;
private:
bool IsEq = false;
bool IsNe = false;
};
/// Wrapper encapsulating separate constraint systems and corresponding value
/// mappings for both unsigned and signed information. Facts are added to and
/// conditions are checked against the corresponding system depending on the
/// signed-ness of their predicates. While the information is kept separate
/// based on signed-ness, certain conditions can be transferred between the two
/// systems.
class ConstraintInfo {
ConstraintSystem UnsignedCS;
ConstraintSystem SignedCS;
const DataLayout &DL;
public:
ConstraintInfo(const DataLayout &DL, ArrayRef<Value *> FunctionArgs)
: UnsignedCS(FunctionArgs), SignedCS(FunctionArgs), DL(DL) {
auto &Value2Index = getValue2Index(false);
// Add Arg > -1 constraints to unsigned system for all function arguments.
for (Value *Arg : FunctionArgs) {
ConstraintTy VarPos(SmallVector<int64_t, 8>(Value2Index.size() + 1, 0),
false, false, false);
VarPos.Coefficients[Value2Index[Arg]] = -1;
UnsignedCS.addVariableRow(VarPos.Coefficients);
}
}
DenseMap<Value *, unsigned> &getValue2Index(bool Signed) {
return Signed ? SignedCS.getValue2Index() : UnsignedCS.getValue2Index();
}
const DenseMap<Value *, unsigned> &getValue2Index(bool Signed) const {
return Signed ? SignedCS.getValue2Index() : UnsignedCS.getValue2Index();
}
ConstraintSystem &getCS(bool Signed) {
return Signed ? SignedCS : UnsignedCS;
}
const ConstraintSystem &getCS(bool Signed) const {
return Signed ? SignedCS : UnsignedCS;
}
void popLastConstraint(bool Signed) { getCS(Signed).popLastConstraint(); }
void popLastNVariables(bool Signed, unsigned N) {
getCS(Signed).popLastNVariables(N);
}
bool doesHold(CmpInst::Predicate Pred, Value *A, Value *B) const;
void addFact(CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn,
unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack);
/// Turn a comparison of the form \p Op0 \p Pred \p Op1 into a vector of
/// constraints, using indices from the corresponding constraint system.
/// New variables that need to be added to the system are collected in
/// \p NewVariables.
ConstraintTy getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1,
SmallVectorImpl<Value *> &NewVariables) const;
/// Turns a comparison of the form \p Op0 \p Pred \p Op1 into a vector of
/// constraints using getConstraint. Returns an empty constraint if the result
/// cannot be used to query the existing constraint system, e.g. because it
/// would require adding new variables. Also tries to convert signed
/// predicates to unsigned ones if possible to allow using the unsigned system
/// which increases the effectiveness of the signed <-> unsigned transfer
/// logic.
ConstraintTy getConstraintForSolving(CmpInst::Predicate Pred, Value *Op0,
Value *Op1) const;
/// Try to add information from \p A \p Pred \p B to the unsigned/signed
/// system if \p Pred is signed/unsigned.
void transferToOtherSystem(CmpInst::Predicate Pred, Value *A, Value *B,
unsigned NumIn, unsigned NumOut,
SmallVectorImpl<StackEntry> &DFSInStack);
};
/// Represents a (Coefficient * Variable) entry after IR decomposition.
struct DecompEntry {
int64_t Coefficient;
Value *Variable;
/// True if the variable is known positive in the current constraint.
bool IsKnownNonNegative;
DecompEntry(int64_t Coefficient, Value *Variable,
bool IsKnownNonNegative = false)
: Coefficient(Coefficient), Variable(Variable),
IsKnownNonNegative(IsKnownNonNegative) {}
};
/// Represents an Offset + Coefficient1 * Variable1 + ... decomposition.
struct Decomposition {
int64_t Offset = 0;
SmallVector<DecompEntry, 3> Vars;
Decomposition(int64_t Offset) : Offset(Offset) {}
Decomposition(Value *V, bool IsKnownNonNegative = false) {
Vars.emplace_back(1, V, IsKnownNonNegative);
}
Decomposition(int64_t Offset, ArrayRef<DecompEntry> Vars)
: Offset(Offset), Vars(Vars) {}
void add(int64_t OtherOffset) {
Offset = addWithOverflow(Offset, OtherOffset);
}
void add(const Decomposition &Other) {
add(Other.Offset);
append_range(Vars, Other.Vars);
}
void sub(const Decomposition &Other) {
Decomposition Tmp = Other;
Tmp.mul(-1);
add(Tmp.Offset);
append_range(Vars, Tmp.Vars);
}
void mul(int64_t Factor) {
Offset = multiplyWithOverflow(Offset, Factor);
for (auto &Var : Vars)
Var.Coefficient = multiplyWithOverflow(Var.Coefficient, Factor);
}
};
// Variable and constant offsets for a chain of GEPs, with base pointer BasePtr.
struct OffsetResult {
Value *BasePtr;
APInt ConstantOffset;
MapVector<Value *, APInt> VariableOffsets;
bool AllInbounds;
OffsetResult() : BasePtr(nullptr), ConstantOffset(0, uint64_t(0)) {}
OffsetResult(GEPOperator &GEP, const DataLayout &DL)
: BasePtr(GEP.getPointerOperand()), AllInbounds(GEP.isInBounds()) {
ConstantOffset = APInt(DL.getIndexTypeSizeInBits(BasePtr->getType()), 0);
}
};
} // namespace
// Try to collect variable and constant offsets for \p GEP, partly traversing
// nested GEPs. Returns an OffsetResult with nullptr as BasePtr of collecting
// the offset fails.
static OffsetResult collectOffsets(GEPOperator &GEP, const DataLayout &DL) {
OffsetResult Result(GEP, DL);
unsigned BitWidth = Result.ConstantOffset.getBitWidth();
if (!GEP.collectOffset(DL, BitWidth, Result.VariableOffsets,
Result.ConstantOffset))
return {};
// If we have a nested GEP, check if we can combine the constant offset of the
// inner GEP with the outer GEP.
if (auto *InnerGEP = dyn_cast<GetElementPtrInst>(Result.BasePtr)) {
MapVector<Value *, APInt> VariableOffsets2;
APInt ConstantOffset2(BitWidth, 0);
bool CanCollectInner = InnerGEP->collectOffset(
DL, BitWidth, VariableOffsets2, ConstantOffset2);
// TODO: Support cases with more than 1 variable offset.
if (!CanCollectInner || Result.VariableOffsets.size() > 1 ||
VariableOffsets2.size() > 1 ||
(Result.VariableOffsets.size() >= 1 && VariableOffsets2.size() >= 1)) {
// More than 1 variable index, use outer result.
return Result;
}
Result.BasePtr = InnerGEP->getPointerOperand();
Result.ConstantOffset += ConstantOffset2;
if (Result.VariableOffsets.size() == 0 && VariableOffsets2.size() == 1)
Result.VariableOffsets = VariableOffsets2;
Result.AllInbounds &= InnerGEP->isInBounds();
}
return Result;
}
static Decomposition decompose(Value *V,
SmallVectorImpl<ConditionTy> &Preconditions,
bool IsSigned, const DataLayout &DL);
static bool canUseSExt(ConstantInt *CI) {
const APInt &Val = CI->getValue();
return Val.sgt(MinSignedConstraintValue) && Val.slt(MaxConstraintValue);
}
static Decomposition decomposeGEP(GEPOperator &GEP,
SmallVectorImpl<ConditionTy> &Preconditions,
bool IsSigned, const DataLayout &DL) {
// Do not reason about pointers where the index size is larger than 64 bits,
// as the coefficients used to encode constraints are 64 bit integers.
if (DL.getIndexTypeSizeInBits(GEP.getPointerOperand()->getType()) > 64)
return &GEP;
assert(!IsSigned && "The logic below only supports decomposition for "
"unsigned predicates at the moment.");
const auto &[BasePtr, ConstantOffset, VariableOffsets, AllInbounds] =
collectOffsets(GEP, DL);
if (!BasePtr || !AllInbounds)
return &GEP;
Decomposition Result(ConstantOffset.getSExtValue(), DecompEntry(1, BasePtr));
for (auto [Index, Scale] : VariableOffsets) {
auto IdxResult = decompose(Index, Preconditions, IsSigned, DL);
IdxResult.mul(Scale.getSExtValue());
Result.add(IdxResult);
// If Op0 is signed non-negative, the GEP is increasing monotonically and
// can be de-composed.
if (!isKnownNonNegative(Index, DL))
Preconditions.emplace_back(CmpInst::ICMP_SGE, Index,
ConstantInt::get(Index->getType(), 0));
}
return Result;
}
// Decomposes \p V into a constant offset + list of pairs { Coefficient,
// Variable } where Coefficient * Variable. The sum of the constant offset and
// pairs equals \p V.
static Decomposition decompose(Value *V,
SmallVectorImpl<ConditionTy> &Preconditions,
bool IsSigned, const DataLayout &DL) {
auto MergeResults = [&Preconditions, IsSigned, &DL](Value *A, Value *B,
bool IsSignedB) {
auto ResA = decompose(A, Preconditions, IsSigned, DL);
auto ResB = decompose(B, Preconditions, IsSignedB, DL);
ResA.add(ResB);
return ResA;
};
Type *Ty = V->getType()->getScalarType();
if (Ty->isPointerTy() && !IsSigned) {
if (auto *GEP = dyn_cast<GEPOperator>(V))
return decomposeGEP(*GEP, Preconditions, IsSigned, DL);
if (isa<ConstantPointerNull>(V))
return int64_t(0);
return V;
}
// Don't handle integers > 64 bit. Our coefficients are 64-bit large, so
// coefficient add/mul may wrap, while the operation in the full bit width
// would not.
if (!Ty->isIntegerTy() || Ty->getIntegerBitWidth() > 64)
return V;
bool IsKnownNonNegative = false;
// Decompose \p V used with a signed predicate.
if (IsSigned) {
if (auto *CI = dyn_cast<ConstantInt>(V)) {
if (canUseSExt(CI))
return CI->getSExtValue();
}
Value *Op0;
Value *Op1;
if (match(V, m_SExt(m_Value(Op0))))
V = Op0;
else if (match(V, m_NNegZExt(m_Value(Op0)))) {
V = Op0;
IsKnownNonNegative = true;
}
if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1))))
return MergeResults(Op0, Op1, IsSigned);
ConstantInt *CI;
if (match(V, m_NSWMul(m_Value(Op0), m_ConstantInt(CI))) && canUseSExt(CI)) {
auto Result = decompose(Op0, Preconditions, IsSigned, DL);
Result.mul(CI->getSExtValue());
return Result;
}
// (shl nsw x, shift) is (mul nsw x, (1<<shift)), with the exception of
// shift == bw-1.
if (match(V, m_NSWShl(m_Value(Op0), m_ConstantInt(CI)))) {
uint64_t Shift = CI->getValue().getLimitedValue();
if (Shift < Ty->getIntegerBitWidth() - 1) {
assert(Shift < 64 && "Would overflow");
auto Result = decompose(Op0, Preconditions, IsSigned, DL);
Result.mul(int64_t(1) << Shift);
return Result;
}
}
return {V, IsKnownNonNegative};
}
if (auto *CI = dyn_cast<ConstantInt>(V)) {
if (CI->uge(MaxConstraintValue))
return V;
return int64_t(CI->getZExtValue());
}
Value *Op0;
if (match(V, m_ZExt(m_Value(Op0)))) {
IsKnownNonNegative = true;
V = Op0;
}
if (match(V, m_SExt(m_Value(Op0)))) {
V = Op0;
Preconditions.emplace_back(CmpInst::ICMP_SGE, Op0,
ConstantInt::get(Op0->getType(), 0));
}
Value *Op1;
ConstantInt *CI;
if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1)))) {
return MergeResults(Op0, Op1, IsSigned);
}
if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1)))) {
if (!isKnownNonNegative(Op0, DL))
Preconditions.emplace_back(CmpInst::ICMP_SGE, Op0,
ConstantInt::get(Op0->getType(), 0));
if (!isKnownNonNegative(Op1, DL))
Preconditions.emplace_back(CmpInst::ICMP_SGE, Op1,
ConstantInt::get(Op1->getType(), 0));
return MergeResults(Op0, Op1, IsSigned);
}
if (match(V, m_Add(m_Value(Op0), m_ConstantInt(CI))) && CI->isNegative() &&
canUseSExt(CI)) {
Preconditions.emplace_back(
CmpInst::ICMP_UGE, Op0,
ConstantInt::get(Op0->getType(), CI->getSExtValue() * -1));
return MergeResults(Op0, CI, true);
}
// Decompose or as an add if there are no common bits between the operands.
if (match(V, m_DisjointOr(m_Value(Op0), m_ConstantInt(CI))))
return MergeResults(Op0, CI, IsSigned);
if (match(V, m_NUWShl(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI)) {
if (CI->getSExtValue() < 0 || CI->getSExtValue() >= 64)
return {V, IsKnownNonNegative};
auto Result = decompose(Op1, Preconditions, IsSigned, DL);
Result.mul(int64_t{1} << CI->getSExtValue());
return Result;
}
if (match(V, m_NUWMul(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI) &&
(!CI->isNegative())) {
auto Result = decompose(Op1, Preconditions, IsSigned, DL);
Result.mul(CI->getSExtValue());
return Result;
}
if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1)))) {
auto ResA = decompose(Op0, Preconditions, IsSigned, DL);
auto ResB = decompose(Op1, Preconditions, IsSigned, DL);
ResA.sub(ResB);
return ResA;
}
return {V, IsKnownNonNegative};
}
ConstraintTy
ConstraintInfo::getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1,
SmallVectorImpl<Value *> &NewVariables) const {
assert(NewVariables.empty() && "NewVariables must be empty when passed in");
bool IsEq = false;
bool IsNe = false;
// Try to convert Pred to one of ULE/SLT/SLE/SLT.
switch (Pred) {
case CmpInst::ICMP_UGT:
case CmpInst::ICMP_UGE:
case CmpInst::ICMP_SGT:
case CmpInst::ICMP_SGE: {
Pred = CmpInst::getSwappedPredicate(Pred);
std::swap(Op0, Op1);
break;
}
case CmpInst::ICMP_EQ:
if (match(Op1, m_Zero())) {
Pred = CmpInst::ICMP_ULE;
} else {
IsEq = true;
Pred = CmpInst::ICMP_ULE;
}
break;
case CmpInst::ICMP_NE:
if (match(Op1, m_Zero())) {
Pred = CmpInst::getSwappedPredicate(CmpInst::ICMP_UGT);
std::swap(Op0, Op1);
} else {
IsNe = true;
Pred = CmpInst::ICMP_ULE;
}
break;
default:
break;
}
if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT &&
Pred != CmpInst::ICMP_SLE && Pred != CmpInst::ICMP_SLT)
return {};
SmallVector<ConditionTy, 4> Preconditions;
bool IsSigned = CmpInst::isSigned(Pred);
auto &Value2Index = getValue2Index(IsSigned);
auto ADec = decompose(Op0->stripPointerCastsSameRepresentation(),
Preconditions, IsSigned, DL);
auto BDec = decompose(Op1->stripPointerCastsSameRepresentation(),
Preconditions, IsSigned, DL);
int64_t Offset1 = ADec.Offset;
int64_t Offset2 = BDec.Offset;
Offset1 *= -1;
auto &VariablesA = ADec.Vars;
auto &VariablesB = BDec.Vars;
// First try to look up \p V in Value2Index and NewVariables. Otherwise add a
// new entry to NewVariables.
SmallDenseMap<Value *, unsigned> NewIndexMap;
auto GetOrAddIndex = [&Value2Index, &NewVariables,
&NewIndexMap](Value *V) -> unsigned {
auto V2I = Value2Index.find(V);
if (V2I != Value2Index.end())
return V2I->second;
auto Insert =
NewIndexMap.insert({V, Value2Index.size() + NewVariables.size() + 1});
if (Insert.second)
NewVariables.push_back(V);
return Insert.first->second;
};
// Make sure all variables have entries in Value2Index or NewVariables.
for (const auto &KV : concat<DecompEntry>(VariablesA, VariablesB))
GetOrAddIndex(KV.Variable);
// Build result constraint, by first adding all coefficients from A and then
// subtracting all coefficients from B.
ConstraintTy Res(
SmallVector<int64_t, 8>(Value2Index.size() + NewVariables.size() + 1, 0),
IsSigned, IsEq, IsNe);
// Collect variables that are known to be positive in all uses in the
// constraint.
SmallDenseMap<Value *, bool> KnownNonNegativeVariables;
auto &R = Res.Coefficients;
for (const auto &KV : VariablesA) {
R[GetOrAddIndex(KV.Variable)] += KV.Coefficient;
auto I =
KnownNonNegativeVariables.insert({KV.Variable, KV.IsKnownNonNegative});
I.first->second &= KV.IsKnownNonNegative;
}
for (const auto &KV : VariablesB) {
if (SubOverflow(R[GetOrAddIndex(KV.Variable)], KV.Coefficient,
R[GetOrAddIndex(KV.Variable)]))
return {};
auto I =
KnownNonNegativeVariables.insert({KV.Variable, KV.IsKnownNonNegative});
I.first->second &= KV.IsKnownNonNegative;
}
int64_t OffsetSum;
if (AddOverflow(Offset1, Offset2, OffsetSum))
return {};
if (Pred == (IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT))
if (AddOverflow(OffsetSum, int64_t(-1), OffsetSum))
return {};
R[0] = OffsetSum;
Res.Preconditions = std::move(Preconditions);
// Remove any (Coefficient, Variable) entry where the Coefficient is 0 for new
// variables.
while (!NewVariables.empty()) {
int64_t Last = R.back();
if (Last != 0)
break;
R.pop_back();
Value *RemovedV = NewVariables.pop_back_val();
NewIndexMap.erase(RemovedV);
}
// Add extra constraints for variables that are known positive.
for (auto &KV : KnownNonNegativeVariables) {
if (!KV.second ||
(!Value2Index.contains(KV.first) && !NewIndexMap.contains(KV.first)))
continue;
SmallVector<int64_t, 8> C(Value2Index.size() + NewVariables.size() + 1, 0);
C[GetOrAddIndex(KV.first)] = -1;
Res.ExtraInfo.push_back(C);
}
return Res;
}
ConstraintTy ConstraintInfo::getConstraintForSolving(CmpInst::Predicate Pred,
Value *Op0,
Value *Op1) const {
Constant *NullC = Constant::getNullValue(Op0->getType());
// Handle trivially true compares directly to avoid adding V UGE 0 constraints
// for all variables in the unsigned system.
if ((Pred == CmpInst::ICMP_ULE && Op0 == NullC) ||
(Pred == CmpInst::ICMP_UGE && Op1 == NullC)) {
auto &Value2Index = getValue2Index(false);
// Return constraint that's trivially true.
return ConstraintTy(SmallVector<int64_t, 8>(Value2Index.size(), 0), false,
false, false);
}
// If both operands are known to be non-negative, change signed predicates to
// unsigned ones. This increases the reasoning effectiveness in combination
// with the signed <-> unsigned transfer logic.
if (CmpInst::isSigned(Pred) &&
isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1) &&
isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1))
Pred = CmpInst::getUnsignedPredicate(Pred);
SmallVector<Value *> NewVariables;
ConstraintTy R = getConstraint(Pred, Op0, Op1, NewVariables);
if (!NewVariables.empty())
return {};
return R;
}
bool ConstraintTy::isValid(const ConstraintInfo &Info) const {
return Coefficients.size() > 0 &&
all_of(Preconditions, [&Info](const ConditionTy &C) {
return Info.doesHold(C.Pred, C.Op0, C.Op1);
});
}
std::optional<bool>
ConstraintTy::isImpliedBy(const ConstraintSystem &CS) const {
bool IsConditionImplied = CS.isConditionImplied(Coefficients);
if (IsEq || IsNe) {
auto NegatedOrEqual = ConstraintSystem::negateOrEqual(Coefficients);
bool IsNegatedOrEqualImplied =
!NegatedOrEqual.empty() && CS.isConditionImplied(NegatedOrEqual);
// In order to check that `%a == %b` is true (equality), both conditions `%a
// >= %b` and `%a <= %b` must hold true. When checking for equality (`IsEq`
// is true), we return true if they both hold, false in the other cases.
if (IsConditionImplied && IsNegatedOrEqualImplied)
return IsEq;
auto Negated = ConstraintSystem::negate(Coefficients);
bool IsNegatedImplied = !Negated.empty() && CS.isConditionImplied(Negated);
auto StrictLessThan = ConstraintSystem::toStrictLessThan(Coefficients);
bool IsStrictLessThanImplied =
!StrictLessThan.empty() && CS.isConditionImplied(StrictLessThan);
// In order to check that `%a != %b` is true (non-equality), either
// condition `%a > %b` or `%a < %b` must hold true. When checking for
// non-equality (`IsNe` is true), we return true if one of the two holds,
// false in the other cases.
if (IsNegatedImplied || IsStrictLessThanImplied)
return IsNe;
return std::nullopt;
}
if (IsConditionImplied)
return true;
auto Negated = ConstraintSystem::negate(Coefficients);
auto IsNegatedImplied = !Negated.empty() && CS.isConditionImplied(Negated);
if (IsNegatedImplied)
return false;
// Neither the condition nor its negated holds, did not prove anything.
return std::nullopt;
}
bool ConstraintInfo::doesHold(CmpInst::Predicate Pred, Value *A,
Value *B) const {
auto R = getConstraintForSolving(Pred, A, B);
return R.isValid(*this) &&
getCS(R.IsSigned).isConditionImplied(R.Coefficients);
}
void ConstraintInfo::transferToOtherSystem(
CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn,
unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack) {
auto IsKnownNonNegative = [this](Value *V) {
return doesHold(CmpInst::ICMP_SGE, V, ConstantInt::get(V->getType(), 0)) ||
isKnownNonNegative(V, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1);
};
// Check if we can combine facts from the signed and unsigned systems to
// derive additional facts.
if (!A->getType()->isIntegerTy())
return;
// FIXME: This currently depends on the order we add facts. Ideally we
// would first add all known facts and only then try to add additional
// facts.
switch (Pred) {
default:
break;
case CmpInst::ICMP_ULT:
case CmpInst::ICMP_ULE:
// If B is a signed positive constant, then A >=s 0 and A <s (or <=s) B.
if (IsKnownNonNegative(B)) {
addFact(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0), NumIn,
NumOut, DFSInStack);
addFact(CmpInst::getSignedPredicate(Pred), A, B, NumIn, NumOut,
DFSInStack);
}
break;
case CmpInst::ICMP_UGE:
case CmpInst::ICMP_UGT:
// If A is a signed positive constant, then B >=s 0 and A >s (or >=s) B.
if (IsKnownNonNegative(A)) {
addFact(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0), NumIn,
NumOut, DFSInStack);
addFact(CmpInst::getSignedPredicate(Pred), A, B, NumIn, NumOut,
DFSInStack);
}
break;
case CmpInst::ICMP_SLT:
if (IsKnownNonNegative(A))
addFact(CmpInst::ICMP_ULT, A, B, NumIn, NumOut, DFSInStack);
break;
case CmpInst::ICMP_SGT: {
if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), -1)))
addFact(CmpInst::ICMP_UGE, A, ConstantInt::get(B->getType(), 0), NumIn,
NumOut, DFSInStack);
if (IsKnownNonNegative(B))
addFact(CmpInst::ICMP_UGT, A, B, NumIn, NumOut, DFSInStack);
break;
}
case CmpInst::ICMP_SGE:
if (IsKnownNonNegative(B))
addFact(CmpInst::ICMP_UGE, A, B, NumIn, NumOut, DFSInStack);
break;
}
}
#ifndef NDEBUG
static void dumpConstraint(ArrayRef<int64_t> C,
const DenseMap<Value *, unsigned> &Value2Index) {
ConstraintSystem CS(Value2Index);
CS.addVariableRowFill(C);
CS.dump();
}
#endif
void State::addInfoForInductions(BasicBlock &BB) {
auto *L = LI.getLoopFor(&BB);
if (!L || L->getHeader() != &BB)
return;
Value *A;
Value *B;
CmpInst::Predicate Pred;
if (!match(BB.getTerminator(),
m_Br(m_ICmp(Pred, m_Value(A), m_Value(B)), m_Value(), m_Value())))
return;
PHINode *PN = dyn_cast<PHINode>(A);
if (!PN) {
Pred = CmpInst::getSwappedPredicate(Pred);
std::swap(A, B);
PN = dyn_cast<PHINode>(A);
}
if (!PN || PN->getParent() != &BB || PN->getNumIncomingValues() != 2 ||
!SE.isSCEVable(PN->getType()))
return;
BasicBlock *InLoopSucc = nullptr;
if (Pred == CmpInst::ICMP_NE)
InLoopSucc = cast<BranchInst>(BB.getTerminator())->getSuccessor(0);
else if (Pred == CmpInst::ICMP_EQ)
InLoopSucc = cast<BranchInst>(BB.getTerminator())->getSuccessor(1);
else
return;
if (!L->contains(InLoopSucc) || !L->isLoopExiting(&BB) || InLoopSucc == &BB)
return;
auto *AR = dyn_cast_or_null<SCEVAddRecExpr>(SE.getSCEV(PN));
BasicBlock *LoopPred = L->getLoopPredecessor();
if (!AR || AR->getLoop() != L || !LoopPred)
return;
const SCEV *StartSCEV = AR->getStart();
Value *StartValue = nullptr;
if (auto *C = dyn_cast<SCEVConstant>(StartSCEV)) {
StartValue = C->getValue();
} else {
StartValue = PN->getIncomingValueForBlock(LoopPred);
assert(SE.getSCEV(StartValue) == StartSCEV && "inconsistent start value");
}
DomTreeNode *DTN = DT.getNode(InLoopSucc);
auto IncUnsigned = SE.getMonotonicPredicateType(AR, CmpInst::ICMP_UGT);
auto IncSigned = SE.getMonotonicPredicateType(AR, CmpInst::ICMP_SGT);
bool MonotonicallyIncreasingUnsigned =
IncUnsigned && *IncUnsigned == ScalarEvolution::MonotonicallyIncreasing;
bool MonotonicallyIncreasingSigned =
IncSigned && *IncSigned == ScalarEvolution::MonotonicallyIncreasing;
// If SCEV guarantees that AR does not wrap, PN >= StartValue can be added
// unconditionally.
if (MonotonicallyIncreasingUnsigned)
WorkList.push_back(
FactOrCheck::getConditionFact(DTN, CmpInst::ICMP_UGE, PN, StartValue));
if (MonotonicallyIncreasingSigned)
WorkList.push_back(
FactOrCheck::getConditionFact(DTN, CmpInst::ICMP_SGE, PN, StartValue));
APInt StepOffset;
if (auto *C = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
StepOffset = C->getAPInt();
else
return;
// Make sure the bound B is loop-invariant.
if (!L->isLoopInvariant(B))
return;
// Handle negative steps.
if (StepOffset.isNegative()) {
// TODO: Extend to allow steps > -1.
if (!(-StepOffset).isOne())
return;
// AR may wrap.
// Add StartValue >= PN conditional on B <= StartValue which guarantees that
// the loop exits before wrapping with a step of -1.
WorkList.push_back(FactOrCheck::getConditionFact(
DTN, CmpInst::ICMP_UGE, StartValue, PN,
ConditionTy(CmpInst::ICMP_ULE, B, StartValue)));
WorkList.push_back(FactOrCheck::getConditionFact(
DTN, CmpInst::ICMP_SGE, StartValue, PN,
ConditionTy(CmpInst::ICMP_SLE, B, StartValue)));
// Add PN > B conditional on B <= StartValue which guarantees that the loop
// exits when reaching B with a step of -1.
WorkList.push_back(FactOrCheck::getConditionFact(
DTN, CmpInst::ICMP_UGT, PN, B,
ConditionTy(CmpInst::ICMP_ULE, B, StartValue)));
WorkList.push_back(FactOrCheck::getConditionFact(
DTN, CmpInst::ICMP_SGT, PN, B,
ConditionTy(CmpInst::ICMP_SLE, B, StartValue)));
return;