-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
317 lines (242 loc) · 11.3 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
import theano
import theano.tensor as T
import theano.tensor.extra_ops as Ops
from theano.tensor.nnet import categorical_crossentropy
from theano.ifelse import ifelse
import numpy as np
from layers import nonlinearities
from layers.layers import DenseLayer,GRU,lookup_table,auto_encoder,LogisticRegression
from utils import *
TINY = 1e-8
class Memory(object):
"""
author:liuxianggen
"""
def __init__(self,facts, facts_mask, vocab_size, n_in, n_hids, **kwargs):
self.vocab_size = vocab_size #24
self.n_in = n_in #30
self.n_hids = n_hids #39
self.params = []
self.cost = 0
if 'table' in kwargs:
table = kwargs['table']
else:
table = lookup_table(n_in, vocab_size)
# self.params += table.params
facts_encoder = auto_encoder(facts, facts_mask, self.vocab_size,
self.n_in, self.n_hids, table=table)
self.params += facts_encoder.params
self.output = facts_encoder.output # (5,39)
self.cost = facts_encoder.cost #a float
self.cost_entry = facts_encoder.cost_entry # vector of float (5), the cost for the specific fact choosed
self.length = self.output.shape[0]
def read(self, index):
return self.output[index:index+1,:],self.cost_entry[index]
class Question(object):
"""
author:liuxianggen
"""
def __init__(self,question, question_mask, vocab_size, n_in, n_hids, **kwargs):
self.vocab_size = vocab_size #24
self.n_in = n_in #30
self.n_hids = n_hids #39
self.params = []
if 'table' in kwargs:
table = kwargs['table']
else:
table = lookup_table(n_in, vocab_size)
# self.params += table.params
facts_encoder = auto_encoder(question, question_mask, self.vocab_size,
self.n_in, self.n_hids, table=table)
self.params += facts_encoder.params
self.output = facts_encoder.output # (39)
self.cost = facts_encoder.cost
class LocationNet(object):
"""
author: Cui Haotian
"""
def __init__(self, **kwargs):
self.n_hids = kwargs.pop('n_hids')
self.n_layers = kwargs.pop('n_layers')
self.n_in = kwargs.pop('n_in')
self.lencoder = GRU(self.n_in, self.n_hids, with_contex=False)
self.dense1 = DenseLayer(self.n_hids, 1, nonlinearity=None)
self.params = self.lencoder.params + self.dense1.params
def _prepare_inputs(self, ques, ht, mem):
"""
ques:(1,qsize)
ht:(1,htsize)
mem.output:(mem size, embedding size)
output:(mem size,1,qsize+htsize+embedding )
"""
ques = repeat_x(ques, mem.length)
ht = repeat_x(ht, mem.length)
output = T.concatenate([ques, ht, mem.output.dimshuffle((0,'x',1))],axis=2)
return output
def apply(self, ques, ht, mem):
# self.length = mem.length
gru_in = self._prepare_inputs(ques, ht, mem)
#gru_in should be (n_steps, batch_sizes, embedding)
assert gru_in.ndim == 3 # shape=(tstep/mem size/batch size, 1, vector size)(5,1,10)
gru_out = self.lencoder.apply(gru_in, mask_below = None) # gru_out shape=(tstep/mem size/batch size, 1, n_hids)
select_w = self.dense1.get_output_for(gru_out.flatten(2)) # shape=(mem size, 1)
self.lt = T.nnet.softmax(select_w.T)# (1, mem size)
return self.lt
class Executor(object):
def __init__(self, n_qfvector, n_state, n_answer_class):
self.n_qfvector = n_qfvector
self.n_state = n_state
self.n_answer_class = n_answer_class
self.dense = DenseLayer(self.n_qfvector+self.n_state, self.n_state, nonlinearity=None)
self.stop_sig = DenseLayer(self.n_state, 1, nonlinearity=nonlinearities.sigmoid)
self.answer_sm = DenseLayer(self.n_state, self.n_answer_class, nonlinearity=nonlinearities.softmax)
self.params = self.dense.params + self.stop_sig.params + self.answer_sm.params
def step_forward(self, qfvector, state_tm1=None, init_flag=False):
if init_flag:
init_state = T.alloc(numpy.float32(0.), qfvector.shape[0], self.n_state)
state_tm1 = init_state
dense_in = T.concatenate([qfvector, state_tm1], axis=1)
state = self.dense.get_output_for(dense_in)
stop = self.stop_sig.get_output_for(state)
answer = self.answer_sm.get_output_for(state)
return state, stop, answer
#
# def dist_info_sym(self, obs_var, state_info_vars=None):
# return dict(prob=L.get_output(self._l_prob, {self._l_obs: obs_var}))
class Reasoner(object):
"""
author: Cui Haotian
the whole model
"""
def __init__(self, env, **kwargs):
self.env = env
self.vocab_size = kwargs.pop('vocab_size')
self.n_in = kwargs.pop('nemb')
self.n_grus = kwargs.pop('n_grus')
self.n_qf = 2 * self.n_grus
self.n_hts = kwargs.pop('n_hts')
self.n_lhids = kwargs.pop('n_lhids')
self.n_layer = kwargs.pop('n_layer')
self.n_label = kwargs.pop('label_size')
self.T = kwargs.pop('T')
self.stp_thrd = kwargs.pop('stp_thrd')
self.params=[]
def apply(self, facts, facts_mask, question, question_mask, y):
"""
layout: (10, 5) (10, 5) (13, 1) (13, 1) (1,)
return: answer, cost
"""
table = lookup_table(self.n_in, self.vocab_size)
self.params += table.params
memory = Memory(facts, facts_mask, self.vocab_size,
self.n_in, self.n_grus, table=table)
quest = Question(question, question_mask, self.vocab_size,
self.n_in, self.n_grus, table=table)
self.params += memory.params
self.params += quest.params
self.exct_net = Executor(self.n_qf, self.n_hts, self.n_label)
self.params += self.exct_net.params
self.loc_net = LocationNet(n_hids=self.n_lhids,n_layers=1,n_in=self.n_qf+self.n_hts)
self.params += self.loc_net.params
#init operations
# mem = memory.output #Fact Memory (5,n_grus=4)
que = quest.output #(1,n_grus=4)
l_idx = 0
htm1 = None
stops_dist = []
answers_dist = []
lts_dist = []
stops = []
answers = []
lts = []
rewards = []
end_t = self.T-1
for t in xrange(self.T):
sf, _ = memory.read(l_idx) #(1,n_grus=4)
qf = T.concatenate([que, sf], axis = 1) #layout: (1, 2*n_grus=8)
ht, stop_dist, answer_dist = self.exct_net.step_forward(qf, htm1, init_flag=(t==0))
htm1 = ht
lt_dist = self.loc_net.apply(que, ht, memory)
l_idx = T.argmax(lt_dist) #hard attention
#htm1, stop, answer, l_idx = _step(memory, l_idx, que, htm1)
answer = T.argmax(answer_dist)
#TODO: implement a real sampling
terminal = self._terminate(stop_dist[0,0])
end_t = T.switch(terminal, T.minimum(t, end_t), end_t)
reward = self.env.step(answer, terminal, y, t, end_t)
stops_dist.append(stop_dist)
answers_dist.append(answer_dist)
lts_dist.append(lt_dist)
stops.append(terminal)
answers.append(answer)
lts.append(l_idx)
rewards.append(reward)
stops_dist = T.concatenate(stops_dist,axis=0)#ndim=2
answers_dist = T.concatenate(answers_dist,axis=0)#ndim=2
lts_dist = T.concatenate(lts_dist,axis=0)#ndim=2
stops = T.stack(stops,axis=0)#ndim=1
answers = T.stack(answers,axis=0)#ndim=1
lts = T.stack(lts,axis=0)#ndim=1
rewards = T.stack(rewards,axis=0)#ndim=1
# rewards = theano.printing.Print('226 line reward:')(rewards)
# stops = theano.printing.Print('227 line reward:')(stops)
returns=[]
for idx in xrange(self.T):
returns.append(T.sum(rewards[idx:]))
returns = T.stack(returns, axis=0) # ndim=1
returns = theano.printing.Print('233 line returns:')(returns)
self.decoder_cost = memory.cost + quest.cost
# answer_dist = theano.printing.Print('230 line answer_dist:')(answer_dist)
y = theano.tensor.extra_ops.to_one_hot(y,answer_dist.shape[1])
# y = theano.printing.Print('231 line y:')(y)
# answers = theano.printing.Print('233 line answers:')(answers)
# TODO: Now, final answer can't simply select the last one!
self.sl_cost = T.mean(categorical_crossentropy(answer_dist, y))
stop_cost=self.log_likelihood_sym(actions_var=stops, dist_info_vars={'prob': stops_dist},bernoulli=True) * returns
answer_cost=self.log_likelihood_sym(actions_var=answers, dist_info_vars={'prob': answers_dist}) * returns
lt_cost=self.log_likelihood_sym(actions_var=lts, dist_info_vars={'prob': lts_dist}) * returns
self.rl_cost = -T.mean(stop_cost+answer_cost+lt_cost)
#TODO: we need to improve this rl_cost to introduce anti-variance measures
return self.rl_cost, self.sl_cost, self.decoder_cost
def log_likelihood_sym(self, actions_var, dist_info_vars, bernoulli = False):
"""
PS: x_var should be the samples from the distributions represented with dist_info_vars
"""
probs = dist_info_vars["prob"]
# Assume layout is N * A
if bernoulli:
actions_var = T.shape_padright(actions_var)
actions_var = theano.printing.Print('264 line actions_var:')(actions_var)
# probs = theano.printing.Print('265 line probs:')(probs)
res = T.sum(actions_var * T.log(probs + TINY) + (1 - actions_var) * T.log(1 - probs + TINY), axis=-1)
return res
# actions_var = theano.printing.Print('269 line actions_var:')(actions_var)
# probs = theano.printing.Print('270 line probs:')(probs)
oneHot = Ops.to_one_hot(actions_var,probs.shape[1])
# oneHot = theano.printing.Print('272 line oneHot:')(oneHot)
res = T.log(T.sum(probs*T.cast(oneHot,'float32'),axis=-1)+TINY)
return res
def _step(self,memory, l_idx, que, state_tm1,t):
sf, _ = memory.read(l_idx) #(1,39)
qf = T.concatenate([que, sf], axis = 1)
ht, stop, answer = self.exct_net.step_forward(qf, state_tm1, init_flag=(t==0))
lt = self.loc_net.apply(que, ht, memory.output)
l_idx = T.argmax(lt).flatten()
return ht, stop, answer, l_idx
def _terminate(self, stop):
return stop > self.stp_thrd
class Env(object):
def __init__(self, final_award, stp_penalty):
self.final_award = final_award
self.stp_penalty = stp_penalty
def step(self, answer, terminal, y, t, end_t):
# answer = theano.printing.Print('284 line answer:')(answer)
# y = theano.printing.Print('285 line y:')(y)
terminal_sig = T.gt(terminal, 0)
# terminal_sig = theano.printing.Print('300 line terminal_sig:')(terminal_sig)
cond = T.eq(answer, y[0])
final_award = T.switch(cond, 1., 0.)
reward = T.switch(terminal_sig, final_award, self.stp_penalty)
reward = T.switch(T.eq(t, end_t), final_award, reward)#if end now, force terminal
reward = T.switch(T.gt(t, end_t), 0., reward)#if already end, force reward = 0.
return reward