Skip to content

Commit fc97e15

Browse files
Merge pull request #183 from su2code/fix_link_combustion
fixing link and formulas in combustion theory
2 parents b2ec789 + f4eda1d commit fc97e15

File tree

1 file changed

+4
-4
lines changed

1 file changed

+4
-4
lines changed

_docs_v7/Theory.md

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -15,7 +15,7 @@ This page contains a very brief summary of the different governing equation sets
1515
- [Incompressible Euler](#incompressible-euler)
1616
- [Turbulence Modeling](#turbulence-modeling)
1717
- [Species Transport](#species-transport)
18-
- [Combustion](#flamelet-combustion-model)
18+
- [Combustion](#combustion)
1919
- [Elasticity](#elasticity)
2020
- [Heat Conduction](#heat-conduction)
2121

@@ -280,14 +280,14 @@ where $$\mu_T$$ is the eddy viscosity and $$Sc_{T}$$ $$[-]$$ the turbulent Schmi
280280
| --- | --- |
281281
| `INC_NAVIER_STOKES` | 8.0.0 |
282282

283-
Combustion with tabulated chemistry solves the scalar transport equations for total enthalpy $h_t=h + h_{chem}$, which is the sum of the sensible enthalpy and the chemical enthalpy. Additionally, it solves a transport equation for the progress variable $C$, indicating the progress of combustion. Reaction source terms for the progress variable, as well as necessary thermodynamic quantities like density, temperature, viscosity, heat capacity, etc. are all obtained from a 2D lookup table where the properties are stored as a function of the progress variable and total enthalpy. Note that temperature is now a quantity that is retrieved from the lookup table. These lookup tables are constructed from 1D detailed chemistry simulations, using codes like Cantera, Ember, FlameMaster (RWTH Aachen) or Chem1d (TU Eindhoven) and are also known as flamelets or Flamelet Generated Manifolds (FGM).
283+
Combustion with tabulated chemistry solves the scalar transport equations for total enthalpy $$h_t=h + h_{chem}$$, which is the sum of the sensible enthalpy and the chemical enthalpy. Additionally, it solves a transport equation for the progress variable $$C$$, indicating the progress of combustion. Reaction source terms for the progress variable, as well as necessary thermodynamic quantities like density, temperature, viscosity, heat capacity, etc. are all obtained from a 2D lookup table where the properties are stored as a function of the progress variable and total enthalpy. Note that temperature is now a quantity that is retrieved from the lookup table. These lookup tables are constructed from 1D detailed chemistry simulations, using codes like Cantera, Ember, FlameMaster (RWTH Aachen) or Chem1d (TU Eindhoven) and are also known as flamelets or Flamelet Generated Manifolds (FGM).
284284

285285
The progress variable-enthalpy approach is used to simulate laminar premixed flames. Nonpremixed flames can also be simulated by simply using a lookup table for non-premixed flames. The progress variable then effectively becomes a mixture fraction. Combustion with conjugate heat transfer is also supported in the tabulated chemistry approach.
286286
Additional transport of (reacting) species can be supported as well. The source terms for these additional species have to be stored in the lookup table. A split-source-term approach is supported, where the source term is assumed to be of the form $$S_{total} = S_{Production} + Y \cdot S_{Consumption}.$$ We store the production and consumption terms in the lookup table and construct the total source term internally. If only a total source term is available, the consumption source term can be set to zero.
287287

288-
At the moment there is no turbulence-chemistry interaction implemented in this approach and the Lewis number is assumed to be $Le=1$
288+
At the moment there is no turbulence-chemistry interaction implemented in this approach and the Lewis number is assumed to be $$Le=1$$.
289289

290-
For a detailed introduction to flamelet modeling see the work of van Oijen et al. https://www.sciencedirect.com/science/article/pii/S0360128515300137
290+
For a detailed introduction to flamelet modeling see the work of [van Oijen et al.](https://www.sciencedirect.com/science/article/pii/S0360128515300137)
291291

292292
---
293293

0 commit comments

Comments
 (0)