-
Notifications
You must be signed in to change notification settings - Fork 1.4k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
1afdc02
commit dfa19d8
Showing
1 changed file
with
49 additions
and
29 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,29 +1,49 @@ | ||
from openai import OpenAI | ||
import streamlit as st | ||
|
||
with st.sidebar: | ||
openai_api_key = st.text_input("OpenAI API Key", key="chatbot_api_key", type="password") | ||
"[Get an OpenAI API key](https://platform.openai.com/account/api-keys)" | ||
"[View the source code](https://github.com/streamlit/llm-examples/blob/main/Chatbot.py)" | ||
"[![Open in GitHub Codespaces](https://github.com/codespaces/badge.svg)](https://codespaces.new/streamlit/llm-examples?quickstart=1)" | ||
|
||
st.title("💬 Chatbot") | ||
st.caption("🚀 A Streamlit chatbot powered by OpenAI") | ||
if "messages" not in st.session_state: | ||
st.session_state["messages"] = [{"role": "assistant", "content": "How can I help you?"}] | ||
|
||
for msg in st.session_state.messages: | ||
st.chat_message(msg["role"]).write(msg["content"]) | ||
|
||
if prompt := st.chat_input(): | ||
if not openai_api_key: | ||
st.info("Please add your OpenAI API key to continue.") | ||
st.stop() | ||
|
||
client = OpenAI(api_key=openai_api_key) | ||
st.session_state.messages.append({"role": "user", "content": prompt}) | ||
st.chat_message("user").write(prompt) | ||
response = client.chat.completions.create(model="gpt-3.5-turbo", messages=st.session_state.messages) | ||
msg = response.choices[0].message.content | ||
st.session_state.messages.append({"role": "assistant", "content": msg}) | ||
st.chat_message("assistant").write(msg) | ||
# Simulate a geospatial heatmap and predictive simulation for the enhanced dashboard | ||
|
||
import geopandas as gpd | ||
import matplotlib.pyplot as plt | ||
from matplotlib.colors import ListedColormap | ||
|
||
# Mock data for regions with adherence rates and infection projections | ||
regions = { | ||
"Region A": {"adherence": 85, "projected_infection": 5, "lat": 0.1, "lon": 36.8}, | ||
"Region B": {"adherence": 78, "projected_infection": 10, "lat": 1.3, "lon": 36.9}, | ||
"Region C": {"adherence": 65, "projected_infection": 25, "lat": -1.5, "lon": 37.1}, | ||
"Region D": {"adherence": 90, "projected_infection": 2, "lat": 0.8, "lon": 37.3}, | ||
} | ||
|
||
# Convert mock data into a GeoDataFrame | ||
data = { | ||
"Region": list(regions.keys()), | ||
"Adherence": [regions[reg]["adherence"] for reg in regions], | ||
"Projected_Infection": [regions[reg]["projected_infection"] for reg in regions], | ||
"Latitude": [regions[reg]["lat"] for reg in regions], | ||
"Longitude": [regions[reg]["lon"] for reg in regions], | ||
} | ||
gdf = gpd.GeoDataFrame(data, geometry=gpd.points_from_xy(data["Longitude"], data["Latitude"])) | ||
|
||
# Set up map plotting with adherence heatmap | ||
fig, ax = plt.subplots(1, 2, figsize=(16, 8)) | ||
|
||
# Heatmap for adherence rates | ||
cmap = ListedColormap(["red", "orange", "green"]) | ||
categories = [65, 75, 100] # Categories for adherence | ||
adherence_colors = ["red" if x < 70 else "orange" if x < 80 else "green" for x in gdf["Adherence"]] | ||
|
||
gdf.plot(ax=ax[0], color=adherence_colors, markersize=100, edgecolor="black") | ||
ax[0].set_title("Geospatial Adherence Rates", fontsize=14) | ||
for x, y, label in zip(gdf["Longitude"], gdf["Latitude"], gdf["Region"]): | ||
ax[0].text(x + 0.05, y, label, fontsize=10) | ||
|
||
# Predicted Infection Simulation Bar | ||
ax[1].bar(gdf["Region"], gdf["Projected_Infection"], color="blue") | ||
ax[1].set_title("Predicted Infection Rate Increase (6 Months)", fontsize=14) | ||
ax[1].set_ylabel("Predicted Increase (%)", fontsize=12) | ||
for i, val in enumerate(gdf["Projected_Infection"]): | ||
ax[1].text(i, val + 1, f"+{val}%", ha="center", fontsize=10) | ||
|
||
# Overall Layout | ||
plt.suptitle("ImpactLens AI: Enhanced Geospatial & Predictive Insights", fontsize=16, weight="bold") | ||
plt.tight_layout(rect=[0, 0, 1, 0.95]) | ||
|
||
plt.show() |