-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy path__main__.py
487 lines (372 loc) · 16.4 KB
/
__main__.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
import argparse
import collections
import datetime
import itertools
import timeit
import numpy as np
from performance.reference.util import mloc as mloc_ref
from performance.reference.util import immutable_filter as immutable_filter_ref
from performance.reference.util import name_filter as name_filter_ref
from performance.reference.util import shape_filter as shape_filter_ref
from performance.reference.util import column_2d_filter as column_2d_filter_ref
from performance.reference.util import column_1d_filter as column_1d_filter_ref
from performance.reference.util import row_1d_filter as row_1d_filter_ref
from performance.reference.util import resolve_dtype as resolve_dtype_ref
from performance.reference.util import resolve_dtype_iter as resolve_dtype_iter_ref
from performance.reference.util import dtype_from_element as dtype_from_element_ref
from performance.reference.util import array_deepcopy as array_deepcopy_ref
from performance.reference.util import isna_element as isna_element_ref
from performance.reference.util import array_to_duplicated_hashable as array_to_duplicated_hashable_ref
from performance.reference.array_go import ArrayGO as ArrayGOREF
from arraykit import mloc as mloc_ak
from arraykit import immutable_filter as immutable_filter_ak
from arraykit import name_filter as name_filter_ak
from arraykit import shape_filter as shape_filter_ak
from arraykit import column_2d_filter as column_2d_filter_ak
from arraykit import column_1d_filter as column_1d_filter_ak
from arraykit import row_1d_filter as row_1d_filter_ak
from arraykit import resolve_dtype as resolve_dtype_ak
from arraykit import resolve_dtype_iter as resolve_dtype_iter_ak
from arraykit import dtype_from_element as dtype_from_element_ak
from arraykit import array_deepcopy as array_deepcopy_ak
from arraykit import isna_element as isna_element_ak
from performance.reference.util import array_to_duplicated_hashable as array_to_duplicated_hashable_ak
from arraykit import ArrayGO as ArrayGOAK
class Perf:
FUNCTIONS = ('main',)
NUMBER = 500_000
#-------------------------------------------------------------------------------
class MLoc(Perf):
def __init__(self):
self.array = np.arange(100)
def main(self):
self.entry(self.array)
class MLocAK(MLoc):
entry = staticmethod(mloc_ak)
class MLocREF(MLoc):
entry = staticmethod(mloc_ref)
#-------------------------------------------------------------------------------
class ImmutableFilter(Perf):
def __init__(self):
self.array = np.arange(100)
def main(self):
a2 = self.entry(self.array)
a3 = self.entry(a2)
class ImmutableFilterAK(ImmutableFilter):
entry = staticmethod(immutable_filter_ak)
class ImmutableFilterREF(ImmutableFilter):
entry = staticmethod(immutable_filter_ref)
#-------------------------------------------------------------------------------
class NameFilter(Perf):
def __init__(self):
self.name1 = ('foo', None, ['bar'])
self.name2 = 'foo'
def main(self):
try:
self.entry(self.name1)
except TypeError:
pass
self.entry(self.name2)
class NameFilterAK(NameFilter):
entry = staticmethod(name_filter_ak)
class NameFilterREF(NameFilter):
entry = staticmethod(name_filter_ref)
#-------------------------------------------------------------------------------
class ShapeFilter(Perf):
def __init__(self):
self.array1 = np.arange(100)
self.array2 = self.array1.reshape(20, 5)
def main(self):
self.entry(self.array1)
self.entry(self.array2)
class ShapeFilterAK(ShapeFilter):
entry = staticmethod(shape_filter_ak)
class ShapeFilterREF(ShapeFilter):
entry = staticmethod(shape_filter_ref)
#-------------------------------------------------------------------------------
class Column2DFilter(Perf):
def __init__(self):
self.array1 = np.arange(100)
self.array2 = self.array1.reshape(20, 5)
def main(self):
self.entry(self.array1)
self.entry(self.array2)
class Column2DFilterAK(Column2DFilter):
entry = staticmethod(column_2d_filter_ak)
class Column2DFilterREF(Column2DFilter):
entry = staticmethod(column_2d_filter_ref)
#-------------------------------------------------------------------------------
class Column1DFilter(Perf):
def __init__(self):
self.array1 = np.arange(100)
self.array2 = self.array1.reshape(100, 1)
def main(self):
self.entry(self.array1)
self.entry(self.array2)
class Column1DFilterAK(Column1DFilter):
entry = staticmethod(column_1d_filter_ak)
class Column1DFilterREF(Column1DFilter):
entry = staticmethod(column_1d_filter_ref)
#-------------------------------------------------------------------------------
class Row1DFilter(Perf):
def __init__(self):
self.array1 = np.arange(100)
self.array2 = self.array1.reshape(1, 100)
def main(self):
self.entry(self.array1)
self.entry(self.array2)
class Row1DFilterAK(Row1DFilter):
entry = staticmethod(row_1d_filter_ak)
class Row1DFilterREF(Row1DFilter):
entry = staticmethod(row_1d_filter_ref)
#-------------------------------------------------------------------------------
class ResolveDType(Perf):
def __init__(self):
self.dtype1 = np.arange(100).dtype
self.dtype2 = np.array(('a', 'b')).dtype
def main(self):
self.entry(self.dtype1, self.dtype2)
class ResolveDTypeAK(ResolveDType):
entry = staticmethod(resolve_dtype_ak)
class ResolveDTypeREF(ResolveDType):
entry = staticmethod(resolve_dtype_ref)
#-------------------------------------------------------------------------------
class ResolveDTypeIter(Perf):
FUNCTIONS = ('iter10', 'iter100000')
NUMBER = 1000
def __init__(self):
self.dtypes10 = [np.dtype(int)] * 9 + [np.dtype(float)]
self.dtypes100000 = (
[np.dtype(int)] * 50000 +
[np.dtype(float)] * 49999 +
[np.dtype(bool)]
)
def iter10(self):
self.entry(self.dtypes10)
def iter100000(self):
self.entry(self.dtypes100000)
class ResolveDTypeIterAK(ResolveDTypeIter):
entry = staticmethod(resolve_dtype_iter_ak)
class ResolveDTypeIterREF(ResolveDTypeIter):
entry = staticmethod(resolve_dtype_iter_ref)
#-------------------------------------------------------------------------------
class ArrayDeepcopy(Perf):
FUNCTIONS = ('memo_new', 'memo_shared')
NUMBER = 500
def __init__(self):
self.array1 = np.arange(100_000)
self.array2 = np.full(100_000, None)
self.array2[0] = [np.nan] # add a mutable
self.memo = {}
def memo_new(self):
memo = {}
self.entry(self.array1, memo)
self.entry(self.array2, memo)
def memo_shared(self):
self.entry(self.array1, self.memo)
self.entry(self.array2, self.memo)
class ArrayDeepcopyAK(ArrayDeepcopy):
entry = staticmethod(array_deepcopy_ak)
class ArrayDeepcopyREF(ArrayDeepcopy):
entry = staticmethod(array_deepcopy_ref)
#-------------------------------------------------------------------------------
class ArrayGOPerf(Perf):
NUMBER = 1000
def __init__(self):
self.array = np.arange(100).astype(object)
def main(self):
ag = self.entry(self.array)
for i in range(1000):
ag.append(i)
if i % 50:
_ = ag.values
class ArrayGOPerfAK(ArrayGOPerf):
entry = staticmethod(ArrayGOAK)
class ArrayGOPerfREF(ArrayGOPerf):
entry = staticmethod(ArrayGOREF)
#-------------------------------------------------------------------------------
class DtypeFromElementPerf(Perf):
NUMBER = 1000
def __init__(self):
NT = collections.namedtuple('NT', tuple('abc'))
self.values = [
np.longlong(-1), np.int_(-1), np.intc(-1), np.short(-1), np.byte(-1),
np.ubyte(1), np.ushort(1), np.uintc(1), np.uint(1), np.ulonglong(1),
np.half(1.0), np.single(1.0), np.float_(1.0), np.longfloat(1.0),
np.csingle(1.0j), np.complex_(1.0j), np.clongfloat(1.0j),
np.bool_(0), np.str_('1'), np.unicode_('1'), np.void(1),
np.object(), np.datetime64('NaT'), np.timedelta64('NaT'), np.nan,
12, 12.0, True, None, float('NaN'), object(), (1, 2, 3),
NT(1, 2, 3), datetime.date(2020, 12, 31), datetime.timedelta(14),
]
# Datetime & Timedelta
for precision in ['ns', 'us', 'ms', 's', 'm', 'h', 'D', 'M', 'Y']:
for kind, ctor in (('m', np.timedelta64), ('M', np.datetime64)):
self.values.append(ctor(12, precision))
for size in (1, 8, 16, 32, 64, 128, 256, 512):
self.values.append(bytes(size))
self.values.append('x' * size)
def main(self):
for _ in range(40):
for val in self.values:
self.entry(val)
class DtypeFromElementPerfAK(DtypeFromElementPerf):
entry = staticmethod(dtype_from_element_ak)
class DtypeFromElementPerfREF(DtypeFromElementPerf):
entry = staticmethod(dtype_from_element_ref)
#-------------------------------------------------------------------------------
class IsNaElementPerf(Perf):
NUMBER = 1000
def __init__(self):
class FloatSubclass(float): pass
class ComplexSubclass(complex): pass
self.values = [
# Na-elements
np.datetime64('NaT'), np.timedelta64('NaT'), None, float('NaN'), -float('NaN'),
# Non-float, Non-na elements
1, 'str', np.datetime64('2020-12-31'), datetime.date(2020, 12, 31), False,
]
nan = np.nan
complex_nans = [
complex(nan, 0),
complex(-nan, 0),
complex(0, nan),
complex(0, -nan),
]
float_classes = [float, np.float16, np.float32, np.float64, FloatSubclass]
if hasattr(np, 'float128'):
float_classes.append(np.float128)
cfloat_classes = [complex, np.complex64, np.complex128, ComplexSubclass]
if hasattr(np, 'complex256'):
cfloat_classes.append(np.complex256)
# Append all the different types of nans across dtypes
for ctor in float_classes:
self.values.append(ctor(nan))
self.values.append(ctor(-nan))
for ctor in cfloat_classes:
for complex_nan in complex_nans:
self.values.append(ctor(complex_nan))
# Append a wide range of float values, with different precision, across types
for val in (
1e-1000, 1e-309, 1e-39, 1e-16, 1e-5, 0.1, 0., 1.0, 1e5, 1e16, 1e39, 1e309, 1e1000,
):
for ctor in float_classes:
self.values.append(ctor(val))
self.values.append(ctor(-val))
for ctor in cfloat_classes:
self.values.append(ctor(complex(val, val)))
self.values.append(ctor(complex(-val, val)))
self.values.append(ctor(complex(val, -val)))
self.values.append(ctor(complex(-val, -val)))
def main(self):
for _ in range(10):
for val in self.values:
self.entry(val)
class IsNaElementPerfAK(IsNaElementPerf):
entry = staticmethod(isna_element_ak)
class IsNaElementPerfREF(IsNaElementPerf):
entry = staticmethod(isna_element_ref)
#-------------------------------------------------------------------------------
class ArrayToDuplicatedHashablePerf(Perf):
NUMBER = 3
FUNCTIONS = (
'array_1d_small',
'array_1d_large',
'array_2d_small',
'array_2d_large',
)
def __init__(self):
self.arrays_1d_small = [
np.array([0,0,1,0,None,None,0,1,None], dtype=object),
np.array([0,0,1,0,'q','q',0,1,'q'], dtype=object),
np.array(['q','q','q', 'a', 'w', 'w'], dtype=object),
np.array([0,1,2,2,1,4,5,3,4,5,5,6], dtype=object),
]
# 0.99920089 0.94194469
rs = np.random.RandomState(0)
self.arrays_1d_large = [
np.arange(100_000).astype(object), # All unique 0.73636183 0.73142613
np.full(100_000, fill_value='abc').astype(object), # All duplicated 0.99341718 1.07130567
rs.randint(0, 100, 100_000).astype(object), # Many repeated elements from small subset 0.96812477 0.97921523
rs.randint(0, 10_000, 100_000).astype(object), # Many repeated elements from medium subset 1.05508269 0.9765244
rs.randint(0, 75_000, 100_000).astype(object), # Some repeated elements from a large subset 0.81474696 0.89746359
np.hstack([np.arange(15), np.arange(90_000), np.arange(15), np.arange(9970)]).astype(object), # Custom 0.84165586 0.86117453
]
self.arrays_2d_small = [
np.array([[None, None, None, 32, 17, 17], [2,2,2,False,'q','q'], [2,2,2,False,'q','q'], ], dtype=object),
np.array([[None, None, None, 32, 17, 17], [2,2,2,False,'q','q'], [2,2,2,False,'q','q'], ], dtype=object),
np.array([[50, 50, 32, 17, 17], [2,2,1,3,3]], dtype=object),
]
self.arrays_2d_large = [
np.arange(100_000).reshape(10_000, 10).astype(object),
np.hstack([np.arange(15), np.arange(90_000), np.arange(15), np.arange(9970)]).reshape(10_000, 10).astype(object),
]
def array_1d_small(self):
for _ in range(10000):
for arr in self.arrays_1d_small:
self.entry(arr, 0, False, False)
self.entry(arr, 0, True, False)
self.entry(arr, 0, False, True)
def array_1d_large(self):
for _ in range(5):
for arr in self.arrays_1d_large:
self.entry(arr, 0, False, False)
self.entry(arr, 0, True, False)
self.entry(arr, 0, False, True)
def array_2d_small(self):
for _ in range(5000):
for axis, arr in itertools.product((0, 1), self.arrays_2d_small):
self.entry(arr, axis, False, False)
self.entry(arr, axis, True, False)
self.entry(arr, axis, False, True)
def array_2d_large(self):
for _ in range(12):
for axis, arr in itertools.product((0, 1), self.arrays_2d_large):
self.entry(arr, axis, False, False)
self.entry(arr, axis, True, False)
self.entry(arr, axis, False, True)
class ArrayToDuplicatedHashablePerfAK(ArrayToDuplicatedHashablePerf):
entry = staticmethod(array_to_duplicated_hashable_ak)
class ArrayToDuplicatedHashablePerfREF(ArrayToDuplicatedHashablePerf):
entry = staticmethod(array_to_duplicated_hashable_ref)
#-------------------------------------------------------------------------------
def get_arg_parser():
p = argparse.ArgumentParser(
description='ArrayKit performance tool.',
)
p.add_argument("--names",
nargs='+',
help='Provide one or more performance tests by name.')
return p
def main():
options = get_arg_parser().parse_args()
match = None if not options.names else set(options.names)
records = [('cls', 'func', 'ak', 'ref', 'ref/ak')]
for cls_perf in Perf.__subclasses__(): # only get one level
cls_map = {}
if match and cls_perf.__name__ not in match:
continue
print(cls_perf)
for cls_runner in cls_perf.__subclasses__():
if cls_runner.__name__.endswith('AK'):
cls_map['ak'] = cls_runner
elif cls_runner.__name__.endswith('REF'):
cls_map['ref'] = cls_runner
for func_attr in cls_perf.FUNCTIONS:
results = {}
for key, cls_runner in cls_map.items():
runner = cls_runner()
if hasattr(runner, 'pre'): #TEMP, for branches
raise RuntimeError('convert your pre() method to __init__()')
f = getattr(runner, func_attr)
results[key] = timeit.timeit('f()',
globals=locals(),
number=cls_runner.NUMBER)
records.append((cls_perf.__name__, func_attr, results['ak'], results['ref'], results['ref'] / results['ak']))
width = 36
for record in records:
print(''.join(
(r.ljust(width) if isinstance(r, str) else str(round(r, 8)).ljust(width)) for r in record
))
if __name__ == '__main__':
main()