1
1
module Statebox.Core.WiringTree where
2
2
3
3
import Prelude
4
- import Data.Array (head )
4
+ import Control.Apply (lift3 )
5
+ import Data.Array (head , length , partition , range )
6
+ import Data.Either (Either (..), either )
5
7
import Data.Maybe (Maybe )
8
+ import Data.Tuple.Nested ((/\))
6
9
7
- import Statebox.Core.Types (Diagram , Net , Wiring )
10
+ import Data.Petrinet.Representation.NLL (ErrNetEncoding , TransitionF' , fromNLL )
11
+ import Statebox.Core.Execution (Path )
12
+ import Statebox.Core.Types (Diagram , Net , PID , TID , Wiring )
8
13
9
14
data WiringTree
10
15
= Net Net
@@ -14,3 +19,60 @@ data WiringTree
14
19
-- | For the moment, we forget about diagrams and gluings and we consider only simple nets
15
20
wiringToWiringTree :: Wiring -> Maybe WiringTree
16
21
wiringToWiringTree wiring = Net <$> head wiring.nets
22
+
23
+ type Transition =
24
+ { path :: Path
25
+ , transition :: TID
26
+ , name :: String
27
+ }
28
+
29
+ data Glued a
30
+ = Untouched a
31
+ | Initial a
32
+ | Final a
33
+ | Glued a a
34
+
35
+ isInitial :: forall a . Glued a -> Boolean
36
+ isInitial = case _ of
37
+ Initial a -> true
38
+ _ -> false
39
+
40
+ isFinal :: forall a . Glued a -> Boolean
41
+ isFinal = case _ of
42
+ Final a -> true
43
+ _ -> false
44
+
45
+ data LinerisationError
46
+ = DiagramNotYetAllowed
47
+ | NLLDecodingFailed ErrNetEncoding
48
+
49
+ linearise :: WiringTree -> Either LinerisationError (Array (Glued Transition ))
50
+ linearise (Net net) = lineariseNet net
51
+ linearise (Diagram diagram branches) = Left DiagramNotYetAllowed
52
+
53
+ lineariseNet :: Net -> Either LinerisationError (Array (Glued Transition ))
54
+ lineariseNet net = linearisePartitionsAndNames net.partition net.names
55
+
56
+ linearisePartitionsAndNames :: Array PID -> Array String -> Either LinerisationError (Array (Glued Transition ))
57
+ linearisePartitionsAndNames partition names =
58
+ either (NLLDecodingFailed >>> Left ) (Right <<< flip lineriseTransitionsAndNames names) $ fromNLL 0 partition
59
+
60
+ -- the use of `lift3` does not consider the fact that the arrays could in principle have different lenghts
61
+ lineriseTransitionsAndNames :: Array (TransitionF' PID ) -> Array String -> Array (Glued Transition )
62
+ lineriseTransitionsAndNames transitions names =
63
+ sortInitialFinal $ lift3 buildGluedTransition (range 0 (length transitions - 1 )) transitions names
64
+
65
+ buildGluedTransition :: TID -> TransitionF' PID -> String -> Glued Transition
66
+ buildGluedTransition tId (inputs /\ outputs) name =
67
+ case (inputs /\ outputs) of
68
+ ([] /\ _ ) -> Initial { name: name, path: [0 , 0 , 0 ], transition: tId } -- the path is [0, 0, 0] because we consider a trivial diagram to be there
69
+ (_ /\ [] ) -> Final { name: name, path: [0 , 0 , 0 ], transition: tId }
70
+ (inp /\ out) -> Untouched { name: name, path: [0 , 0 , 0 ], transition: tId }
71
+
72
+ -- | we are using this custom function instead of `sortBy` because that does not guarantee
73
+ -- | the order of equal things to be preserved
74
+ sortInitialFinal :: forall a . Array (Glued a ) -> Array (Glued a )
75
+ sortInitialFinal gluedItems =
76
+ let { no: notInitial , yes: initial } = partition isInitial gluedItems
77
+ { no: notInitialAndFinal, yes: final } = partition isFinal notInitial
78
+ in initial <> notInitialAndFinal <> final
0 commit comments