-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathaa_tree.go
362 lines (334 loc) · 9.67 KB
/
aa_tree.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
package AA_Tree
type aaNode struct {
parent *aaNode
left *aaNode
right *aaNode
value int
level int
}
type AATree struct {
root *aaNode
count int
}
func (node *aaNode) getGrandparent() *aaNode {
parent := node.parent
if parent == nil {
return nil
}
grandParent := parent.parent
return grandParent
}
/*
Returns a boolean indicating if the given aaNode is the right grandchild
1 5
\ \
2 7
\ /
3 6
In the above example, 3 is a right grandchild of 1.
6 is not a right grandchild of 5
*/
func (node *aaNode) isRightGrandChild(grandParent *aaNode) bool {
return grandParent.right != nil && grandParent.right.right != nil && grandParent.right.right == node
}
/* Adds a value into the tree */
func (tree *AATree) Add(value int) {
if tree.root == nil {
// No root, create new one
newNode := aaNode{
parent: nil,
left: nil,
right: nil,
value: value,
level: 1,
}
tree.root = &newNode
} else {
tree.add(value, tree.root)
}
tree.count++
}
/* The internal add function, which traverses the trees nodes until it lands at the correct node,
left/right of which the new node should be inserted.
Backtracing from the recursion, we check if we should perform a split or skew operation*/
func (tree *AATree) add(value int, node *aaNode) {
if value < node.value {
// go left
if node.left == nil {
// new left aaNode
newNode := aaNode{
parent: node,
left: nil,
right: nil,
value: value,
level: 1,
}
node.left = &newNode
// We've added a left node, check for a need to skew
tree.checkSkew(&newNode, true)
} else {
tree.add(value, node.left)
}
} else if value > node.value {
// go right
if node.right == nil {
// new right aaNode
newNode := aaNode{
parent: node,
left: nil,
right: nil,
value: value,
level: 1,
}
node.right = &newNode
// We've added a right node, check for a need to split
tree.checkSplit(&newNode)
} else {
tree.add(value, node.right)
}
} else {
panic("Equal elements are unsupported!")
}
// Backtracking through the path, check for skews and splits
tree.checkSkew(node, true)
tree.checkSplit(node)
}
//
func (tree *AATree) Remove(value int) {
if tree.root == nil {
panic("There is nothing to remove!")
}
tree.remove(value, tree.root)
tree.count--
}
//TODO: Implement level decrementation
func (tree *AATree) remove(value int, node *aaNode) {
if node == nil {
// Maybe pass silently
tree.count++
panic("There is no such element in the tree!")
}
if node.value != value {
// recurse downwards until we find the right node
if node.value > value {
// go left
tree.remove(value, node.left)
} else {
// go right
tree.remove(value, node.right)
}
} else {
// were at the value we want
// TODO: Remove
if node.left == nil && node.right == nil {
// we're at a leaf, simply remove
parent := node.parent
if parent.left == node {
parent.left = nil
} else {
parent.right = nil
}
} else if node.left == nil {
// there is a right node, get the predecessor
predecessor := node.right
for predecessor.left != nil {
predecessor = predecessor.left
}
// swap both nodes
// TODO: Right child of predecessor might get lost?
node.value = predecessor.value
//node.level = predecessor.level
predParent := predecessor.parent
// Remove the predecessor from the tree
if predParent.right == predecessor {
predParent.right = nil
} else {
predParent.left = nil
}
} else {
// there is a left node
// TODO: This is predecessor
sucessor := node.left
for sucessor.right != nil {
sucessor = sucessor.right
}
// swap both nodes
// TODO: Left child of successor might get lost?
node.value = sucessor.value
//node.level = sucessor.level
sucParent := sucessor.parent
// Remove the successor from the tree
if sucParent.right == sucessor {
sucParent.right = nil
} else {
sucParent.left = nil
}
}
}
// The node is removed, fix levels
/*
if (root->link[0]->level < root->level - 1 || root->link[1]->level < root->level - 1)
{
if (root->link[1]->level > --root->level)
{
root->link[1]->level = root->level;
}
root = skew(root);
root->link[1] = skew(root->link[1]);
root->link[1]->link[1] = skew(root->link[1]->link[1]);
root = split(root);
root->link[1] = split(root->link[1]);
}
*/
// left node should be exactly one level less
leftLevelIsWrong := (node.left != nil && node.left.level < node.level - 1) ||
(node.left == nil && node.level > 1) // if we dont have a left node, our level should be 1
// right level should be exactly one less or equal
rightLevelIsWrong := (node.right != nil && node.right.level < node.level - 1) ||
(node.right == nil && node.level > 1) // if we dont have a right node, our level should be 1
// If there is no break in the levels there is no need to do rebalance operations
if leftLevelIsWrong || rightLevelIsWrong {
node.level-- // decrease level
if node.right != nil && node.right.level > node.level {
// right node had the equal level and is now bigger after our decrease, so we reset its level
node.right.level = node.level
}
//if (node.value == 2) {
// fmt.Println("WERE AT THE ROOT")
//}
tree.checkSkew(node, false)
if node.left != nil {
tree.checkSkew(node.left, false)
}
if node.right != nil {
tree.checkSkew(node.right, false)
}
//if node.value == 2 {
//fmt.Println("Root right is", node.right.value, "with level", node.right.level)
//
//}
if node.right != nil && node.right.left != nil {
tree.checkSkew(node.right.left, false)
//fmt.Println(node.right.value)
}
if node.right != nil && node.right.right != nil && node.right.right.left != nil{
//tree.checkSkew(node.right.right, false)
tree.checkSkew(node.right.right.left, false)
}
//if node.right != nil && node.right.right != nil && node.right.right.left != nil {
// tree.checkSkew(node.right.right.left)
//}
tree.checkSplit(node)
// if we do a split, we need to keep track of the right-right leaf so that we can check it for a split as well
// example: the TestRemovalWorstCase() test function
var rightRightLeaf *aaNode
if node.right != nil && node.right.right != nil {
rightRightLeaf = node.right.right
tree.checkSplit(node.right.right)
}
if rightRightLeaf != nil && rightRightLeaf.right != nil && rightRightLeaf.right.right != nil{
tree.checkSplit(rightRightLeaf.right.right)
}
if node.right != nil {
tree.checkSplit(node.right)
}
//if node.right != nil && node.right.right != nil && node.right.right.right != nil {
// tree.checkSplit(node.right.right.right)
//}
}
}
/*
Performs a split operation, given the three needed nodes
11(R) 12
\ / \
12(P) ===> 11 13
\
13(C)
P becomes the new root, where any leaf that was left of P is now to the right of R
i.e if 12 had a left child 11.5, 11.5 should become the right child of the new 11
*/
func (tree *AATree) split(grandParent, parent, leaf *aaNode) {
// fixes grandgrandparent's link
GGParent := grandParent.parent
if GGParent != nil {
if GGParent.left == grandParent {
GGParent.left = parent
} else {
GGParent.right = parent
}
}
if grandParent == tree.root {
// we now have a new root
tree.root = parent
}
parent.parent = GGParent // R parent is now some upwards node
grandParent.parent = parent // R parent is now P
grandParent.right = parent.left
if parent.left != nil {
parent.left.parent = grandParent
}
parent.left = grandParent
parent.level++
}
/* Given a node, check if a Split operation should be performed, by checking the node's grandparent level
The node we're given would be the downmost one in the split operation */
func (tree *AATree) checkSplit(node *aaNode) {
grandParent := node.getGrandparent()
if grandParent != nil && node.isRightGrandChild(grandParent) && grandParent.level <= node.level {
tree.split(grandParent, node.parent, node)
}
}
/*
Performs a skew operation, given the two needed nodes
12(A) 1 11(B)1
/ ===> \
11(B) 1 12(A)1
*/
func (tree *AATree) skew(parent, leaf *aaNode) {
grandParent := parent.parent
//if leaf.value == 4 { fmt.Println("grandparent is", grandParent.value)
//}
if grandParent != nil {
if grandParent.value < parent.value {
// new GP right
//if leaf.value == 4 { fmt.Println("grandparent is", grandParent.value) }
grandParent.right = leaf
//fmt.Println(leaf.value)
//fmt.Println(grandParent.right.value)
} else {
// new GP left
grandParent.left = leaf
}
} else {
// new root
tree.root = leaf
}
// figure out where the LEAF
leaf.parent = grandParent
oldRight := leaf.right
leaf.right = parent
parent.left = oldRight
if oldRight != nil {
oldRight.parent = parent
}
parent.parent = leaf
}
/* Given a node, check is a Skew operation should be performed by checking if its a left child
and if its level is bigger or equal to his parent's
param: checkForSplit - a boolean indicating if we want to split if it's ok to split after the skew
We generally don't want to do that in deletions, as in the example on the TestFunctionalTestTreeRemoval function
where we remove 1 from the tree
*/
func (tree *AATree) checkSkew(node *aaNode, checkForSplit bool) {
parent := node.parent
if parent != nil && parent.left == node && parent.level <= node.level {
tree.skew(parent, node)
// check for split, our parent would now be the middle element
if parent.right != nil && checkForSplit {
grandParent := node
if grandParent != nil && parent.right.isRightGrandChild(grandParent) && grandParent.level <= parent.right.level {
tree.split(grandParent, parent, parent.right)
}
}
}
}