Skip to content

softsys4ai/SCTL

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SCTL

A robust methodology to causal learning domain invariant feature set from a dataset without utilizing underlying graph structure. Paper for the method: https://arxiv.org/abs/2103.00139

Project Organization

├── LICENSE
├── Makefile           <- Makefile with commands like `make data` or `make train`
├── README.md          <- The top-level README for developers using this project.
├── data
│   ├── Synthetic       <- Data that has been generated using R scripts.
│   └── Real            <- Data that had been obtained from a real-world scenario.
│
├── docs              <- A default folder containing the inital results and steps to run the code
│
├── references         <- Python files containing implemetations of other methods
├── reports
│   ├── figures        <- Generated normalized, selective plots used for reporting.
│   ├── supp           <- All plots and values for each experiment for each setting.
│   └── Python plots   <- Plots for all experimental settings generated in python.
│                         
│
├── requirements.txt   <- The requirements file for reproducing the analysis environment
|
├── SCTL_experiments.ipynb   <- A sample notebook containing experimentation on multiple domain and comparison of SCTL with multiple methods 
│    
├── src                <- Source code for use in this project.
│   ├── _pycache_      <- Necessary files for python module
│   │
│   ├── data           <- R Scripts to generate data, t-test values and ci-tests.
│   │   ├── data.R
│   │   ├── data_dis_notequal.R
│   │   ├── graph.R
│   │   └── tests and final plots.R
│   │
│   ├── models       <- Scripts for raw versions Greedy subset search (GSS) and Exahustive Subset Search (NIPS) version we used
│   │   ├── GSS_NIPS_model.py
│   │   ├── ESS_model_(prediction script).py
│   │   └── ESS_model_(original script).py
│   │
│   ├── all experiements+vizualization   <- Complete automated script generating all necessary experiments provided in the paper (values need to be fed for ESS)
│   │   ├── outputs            <- supplmentary files and subfiles 
│   │   ├── fast_cmim.py
│   │   ├── utils.py
│   │   ├── condense.py          <- MAIN FILE - generates plots and runs all experiments 
│   │   ├── c45.py
│   │   ├── FCBF_module.py
│   │   ├── test.py
│   │   ├── real_data_experiments.py
│   │   └── real_data_visuals.py
│
└── tox.ini            <- tox file with settings for running tox; see tox.readthedocs.io

Project based on the cookiecutter data science project template. #cookiecutterdatascience

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published