Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Issues running train and detect screenshot #1

Open
rakin92 opened this issue Feb 11, 2022 · 0 comments
Open

Issues running train and detect screenshot #1

rakin92 opened this issue Feb 11, 2022 · 0 comments

Comments

@rakin92
Copy link

rakin92 commented Feb 11, 2022

When I try to run the train.py it errors out. The detect and decect_oob_screenshot works.

(.env) PS C:\Users\guests\Desktop\scripts\osrs_yolov5> python train.py --data osrs.yaml --weights yolov5s.pt --batch-size 2 --epoch 200
C:\Users\guests\Desktop\scripts\osrs_yolov5\train.py
train: weights=yolov5s.pt, cfg=, data=osrs.yaml, hyp=data/hyps/hyp.scratch.yaml, epochs=200, batch_size=2, imgsz=640, rect=False, resume=False, nosave=False, noval=False, noautoanchor=False, evolve=None, bucket=, cache=None, image_weights=False, device=, multi_scale=False, single_cls=False, adam=False, sync_bn=False, workers=8, project=runs/train, entity=None, name=exp, exist_ok=False, quad=False, linear_lr=False, label_smoothing=0.0, upload_dataset=False, bbox_interval=-1, save_period=-1, artifact_alias=latest, local_rank=-1, freeze=0
github: fatal: ambiguous argument 'main..origin/master': unknown revision or path not in the working tree.
Use '--' to separate paths from revisions, like this:
'git <command> [<revision>...] -- [<file>...]'
Command 'git rev-list main..origin/master --count' returned non-zero exit status 128.
YOLOv5  1a959d1 torch 1.9.0+cu102 CUDA:0 (NVIDIA GeForce RTX 2070 with Max-Q Design, 8192.0MB)

hyperparameters: lr0=0.01, lrf=0.2, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0
Weights & Biases: run 'pip install wandb' to automatically track and visualize YOLOv5  runs (RECOMMENDED)
TensorBoard: Start with 'tensorboard --logdir runs\train', view at http://localhost:6006/
2022-02-11 07:56:05.522624: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'cudart64_110.dll'; dlerror: cudart64_110.dll not found
2022-02-11 07:56:05.523096: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
Overriding model.yaml nc=80 with nc=1

                 from  n    params  module                                  arguments
  0                -1  1      3520  models.common.Conv                      [3, 32, 6, 2, 2]
  1                -1  1     18560  models.common.Conv                      [32, 64, 3, 2]
  2                -1  1     18816  models.common.C3                        [64, 64, 1]
  3                -1  1     73984  models.common.Conv                      [64, 128, 3, 2]
  4                -1  2    115712  models.common.C3                        [128, 128, 2]
  5                -1  1    295424  models.common.Conv                      [128, 256, 3, 2]
  6                -1  3    625152  models.common.C3                        [256, 256, 3]
  7                -1  1   1180672  models.common.Conv                      [256, 512, 3, 2]
  8                -1  1   1182720  models.common.C3                        [512, 512, 1]
  9                -1  1    656896  models.common.SPPF                      [512, 512, 5]
 10                -1  1    131584  models.common.Conv                      [512, 256, 1, 1]
 11                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']
 12           [-1, 6]  1         0  models.common.Concat                    [1]
 13                -1  1    361984  models.common.C3                        [512, 256, 1, False]
 14                -1  1     33024  models.common.Conv                      [256, 128, 1, 1]
 15                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']
 16           [-1, 4]  1         0  models.common.Concat                    [1]
 17                -1  1     90880  models.common.C3                        [256, 128, 1, False]
 18                -1  1    147712  models.common.Conv                      [128, 128, 3, 2]
 19          [-1, 14]  1         0  models.common.Concat                    [1]
 20                -1  1    296448  models.common.C3                        [256, 256, 1, False]
 21                -1  1    590336  models.common.Conv                      [256, 256, 3, 2]
 22          [-1, 10]  1         0  models.common.Concat                    [1]
 23                -1  1   1182720  models.common.C3                        [512, 512, 1, False]
 24      [17, 20, 23]  1     16182  models.yolo.Detect                      [1, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [128, 256, 512]]
Model Summary: 270 layers, 7022326 parameters, 7022326 gradients

Transferred 344/350 items from yolov5s.pt
Scaled weight_decay = 0.0005
optimizer: SGD with parameter groups 57 weight, 60 weight (no decay), 60 bias
train: Scanning 'datasets\osrs\labels.cache' images and labels... 0 found, 117 missing, 0 empty, 0 corrupted: 100%|█████████████████████████████████████████████████████████████████████████████████████| 117/117 [00:00<?, ?it/s]
Traceback (most recent call last):
  File "C:\Users\guests\Desktop\scripts\osrs_yolov5\train.py", line 605, in <module>
    main(opt)
  File "C:\Users\guests\Desktop\scripts\osrs_yolov5\train.py", line 503, in main
    train(opt.hyp, opt, device)
  File "C:\Users\guests\Desktop\scripts\osrs_yolov5\train.py", line 208, in train
    train_loader, dataset = create_dataloader(train_path, imgsz, batch_size // WORLD_SIZE, gs, single_cls,
  File "C:\Users\guests\Desktop\scripts\osrs_yolov5\utils\datasets.py", line 98, in create_dataloader
    dataset = LoadImagesAndLabels(path, imgsz, batch_size,
  File "C:\Users\guests\Desktop\scripts\osrs_yolov5\utils\datasets.py", line 418, in __init__
    assert nf > 0 or not augment, f'{prefix}No labels in {cache_path}. Can not train without labels. See {HELP_URL}'
AssertionError: train: No labels in datasets\osrs\labels.cache. Can not train without labels. See https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data

Also get this error when running just detect_screenshot.py

RuntimeError: Input type (torch.cuda.HalfTensor) and weight type (torch.cuda.FloatTensor) should be the same

if I change &= to just = get another error

RuntimeError: Input type (torch.cuda.HalfTensor) and weight type (torch.cuda.FloatTensor) should be the same
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant