forked from desh2608/crnn-relation-classification
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
executable file
·177 lines (153 loc) · 4.84 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import numpy as np
from sklearn import metrics
from sklearn.metrics import classification_report
import pickle
import source.crnn_max as ModelSource
fp_correct = open('./results/crnn-max-all-features_correct.txt','wb')
fp_wrong = open('./results/crnn-max-all-features_wrong.txt','wb')
# fp = open('./results/attention_weights.txt','wb')
'''
with open('./i2b2/i2b2-train2.pickle', 'rb') as handle:
W = pickle.load(handle)
Y_onehot = pickle.load(handle)
wv = pickle.load(handle)
word_list = pickle.load(handle)
rev_word_list = pickle.load(handle)
label_dict = pickle.load(handle)
rev_label_dict = pickle.load(handle)
'''
with open('./ddi/ddi-train.pickle', 'rb') as handle:
W = pickle.load(handle)
Y_onehot = pickle.load(handle)
wv = pickle.load(handle)
word_list = pickle.load(handle)
rev_word_list = pickle.load(handle)
label_dict = pickle.load(handle)
rev_label_dict = pickle.load(handle)
per = 0.8
num_total = len(W)
seq_len = len(W[0])
word_dict_size = len(word_list)
label_dict_size = len(label_dict)
# SC: The following is probably done for the first dataset only, as described
# in the paper # SC
# Splitting training set into train and validation set
# W_train = W[:int(per*num_total)+1]
# W_dev = W[int(per*num_total)+1:]
# Y_train = Y_onehot[:int(per*num_total)+1]
# Y_dev = Y_onehot[int(per*num_total)+1:]
W_train = W
Y_train = Y_onehot
model = ModelSource.Model(label_dict_size,seq_len,word_dict_size,wv)
## Training the model
num_train = len(W_train)
y_true_list = []
y_pred_list = []
num_epochs = 30
N = 5
batch_size = 256
num_batches_per_epoch = int(num_train/batch_size)
def test_step(W_te, Y_te):
n = len(W_te)
num = int(n/batch_size) + 1
sample = []
for batch_num in range(num):
start_index = batch_num*batch_size
end_index = min((batch_num + 1) * batch_size, n)
sample.append(range(start_index, end_index))
pred = []
for i in sample:
p = model.test_step(W_te[i], Y_te[i])
pred.extend(p)
return pred
for j in range(num_epochs):
acc = []
step = 0
sam=[]
for batch_num in range(num_batches_per_epoch):
start_index = batch_num*batch_size
end_index = (batch_num + 1) * batch_size
sam.append(range(start_index, end_index))
for rang in sam:
step,acc_cur = model.train_step(W_train[rang], Y_train[rang])
acc.append(acc_cur)
acc = np.array(acc)
print "Average accuracy for epoch",j+1,"=",np.mean(acc)
# if ((j+1)%N==0):
# # fp.write('Epoch: '+str(j+1)+'\n')
# pred = test_step(W_dev, d1_list_te, d2_list_te, Y_dev)
# print "test data size ", len(pred)
# y_true = np.argmax(Y_dev, 1)
# y_pred = pred
# # print(classification_report(y_true, y_pred,[1,2,3,4],digits=4))
# # fp.write(classification_report(y_true, y_pred,[1,2,3,4,5,6,7,8],digits=4))
# print(classification_report(y_true, y_pred,[1,2,3,4,5,6,7,8],digits=4))
print "Training finished."
# fp.close()
##------------------------------------------------------------------------------------##
##TESTING
with open('./ddi/ddi-test.pickle', 'rb') as handle:
# sent_names = pickle.load(handle)
sentences = pickle.load(handle)
sent_lengths = pickle.load(handle)
W_te = pickle.load(handle)
Y_onehot = pickle.load(handle)
wv = pickle.load(handle)
word_list = pickle.load(handle)
rev_word_list = pickle.load(handle)
label_dict = pickle.load(handle)
rev_label_dict = pickle.load(handle)
print "Test data loaded"
num_total = len(W_te)
seq_len = len(W_te[0])
# word_dict_size = len(word_list)
# label_dict_size = len(label_dict)
# att_weights = []
pred = test_step(W_te,Y_onehot)
y_true = np.argmax(Y_onehot, 1)
y_pred = pred
# print(classification_report(y_true, y_pred,[1,2,3,4],digits=4))
print(classification_report(y_true, y_pred,[1,2,3,4,5,6,7,8],digits=4))
# fp.write(classification_report(y_true, y_pred,[1,2,3,4,5,6,7,8],digits=4))
# i=0
# j=0
# atts = []
# for t,p in zip(y_true.tolist(),y_pred):
# sent = sentences[i]
# true_class = rev_label_dict[t]
# length = int(sent_lengths[i])
# att = att_weights[i].tolist()
# i+=1
# if(t==p and t!=0):
# # fp.write(str(j) + '\n'+ sent+'\n'+str(length) + '\n' +true_class+'\n\n')
# j+=1
# atts.append(att[:length])
# i = 0
# n = len(y_true)
# sum_correct = 0
# nc = 0
# sum_wrong = 0
# nw = 0
# for t,p in zip(y_true.tolist(),y_pred):
# name = sent_names[i]
# sent = sentences[i]
# length = sent_lengths[i]
# true_class = rev_label_dict[t]
# pred_class = rev_label_dict[p]
# i += 1
# if(t!=0):
# if(t==p):
# fp_correct.write(name+"\n"+sent+"\n"+str(length)+"\n"+true_class+"\n"+pred_class+"\n\n")
# sum_correct += int(length)
# nc += 1
# else:
# fp_wrong.write(name+"\n"+sent+"\n"+str(length)+"\n"+true_class+"\n"+pred_class+"\n\n")
# sum_wrong += int(length)
# nw += 1
# avg_correct = float(sum_correct)/nc
# avg_wrong = float(sum_wrong)/nw
# print "Average correct sentence length",avg_correct
# print "Average wrong sentence length",avg_wrong
# fp_correct.close()
# fp_wrong.close()
# fp.close()