-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathreferences.bib
1035 lines (941 loc) · 42.1 KB
/
references.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
@book{murphy2023probabilistic,
author = "Kevin P. Murphy",
title = "Probabilistic Machine Learning: Advanced Topics",
publisher = "MIT Press",
year = 2023,
url = "http://probml.github.io/book2"
}
@book{bishop2006pattern,
title={Pattern Recognition and Machine Learning},
author={Bishop, Christopher M},
year={2006},
publisher={Springer},
url={https://www.microsoft.com/en-us/research/uploads/prod/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf}
}
@book{luo2020principles,
title={Principles of Neurobiology},
author={Luo, Liqun},
year={2020},
publisher={Garland Science}
}
@article{hodgkin1952quantitative,
title={A quantitative description of membrane current and its application to conduction and excitation in nerve},
author={Hodgkin, Alan L and Huxley, Andrew F},
journal={The Journal of Physiology},
volume={117},
number={4},
pages={500},
year={1952}
}
@article{jun2017fully,
title = "Fully integrated silicon probes for high-density recording of
neural activity",
author = "Jun, James J and Steinmetz, Nicholas A and Siegle, Joshua H and
Denman, Daniel J and Bauza, Marius and Barbarits, Brian and Lee,
Albert K and Anastassiou, Costas A and Andrei, Alexandru and
Ayd{\i}n, {\c C}a{\u g}atay and Barbic, Mladen and Blanche,
Timothy J and Bonin, Vincent and Couto, Jo{\~a}o and Dutta,
Barundeb and Gratiy, Sergey L and Gutnisky, Diego A and
H{\"a}usser, Michael and Karsh, Bill and Ledochowitsch, Peter and
Lopez, Carolina Mora and Mitelut, Catalin and Musa, Silke and
Okun, Michael and Pachitariu, Marius and Putzeys, Jan and Rich, P
Dylan and Rossant, Cyrille and Sun, Wei-Lung and Svoboda, Karel
and Carandini, Matteo and Harris, Kenneth D and Koch, Christof
and O'Keefe, John and Harris, Timothy D",
journal = "Nature",
volume = 551,
number = 7679,
pages = "232--236",
month = nov,
year = 2017,
language = "en"
}
@article{steinmetz2021neuropixels,
title={Neuropixels 2.0: {A} miniaturized high-density probe for stable, long-term brain recordings},
author={Steinmetz, Nicholas A and Aydin, Cagatay and Lebedeva, Anna and Okun, Michael and Pachitariu, Marius and Bauza, Marius and Beau, Maxime and Bhagat, Jai and B{\"o}hm, Claudia and Broux, Martijn and others},
journal={Science},
volume={372},
number={6539},
pages={eabf4588},
year={2021},
publisher={American Association for the Advancement of Science}
}
@article{gold2006origin,
title={On the origin of the extracellular action potential waveform: a modeling study},
author={Gold, Carl and Henze, Darrell A and Koch, Christof and Buzsaki, Gyorgy},
journal={Journal of neurophysiology},
volume={95},
number={5},
pages={3113--3128},
year={2006},
publisher={American Physiological Society}
}
@article{ding2008convex,
title={Convex and semi-nonnegative matrix factorizations},
author={Ding, Chris HQ and Li, Tao and Jordan, Michael I},
journal={IEEE transactions on pattern analysis and machine intelligence},
volume={32},
number={1},
pages={45--55},
year={2008},
publisher={IEEE}
}
@book{hastie2009elements,
title={The Elements of Statistical Learning: Data Mining, Inference, and Prediction},
author={Hastie, Trevor and Tibshirani, Robert and Friedman, Jerome H and Friedman, Jerome H},
volume={2},
year={2009},
publisher={Springer}
}
@book{dayan2005theoretical,
title={Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems},
author={Dayan, Peter and Abbott, Laurence F},
year={2005},
publisher={MIT press}
}
@article{mnih2007probabilistic,
title={Probabilistic matrix factorization},
author={Mnih, Andriy and Salakhutdinov, Russ R},
journal={Advances in neural information processing systems},
volume={20},
year={2007}
}
@article{tipping1999probabilistic,
title={Probabilistic principal component analysis},
author={Tipping, Michael E and Bishop, Christopher M},
journal={Journal of the Royal Statistical Society: Series B (Statistical Methodology)},
volume={61},
number={3},
pages={611--622},
year={1999},
publisher={Wiley Online Library}
}
@article{lee1999learning,
title={Learning the parts of objects by non-negative matrix factorization},
author={Lee, Daniel D and Seung, H Sebastian},
journal={Nature},
volume={401},
number={6755},
pages={788--791},
year={1999},
publisher={Nature Publishing Group}
}
@article{blei2003latent,
title={Latent {D}irichlet allocation},
author={Blei, David M and Ng, Andrew Y and Jordan, Michael I},
journal={Journal of machine Learning research},
volume={3},
number={Jan},
pages={993--1022},
year={2003}
}
@article{gopalan2013efficient,
title={Efficient discovery of overlapping communities in massive networks},
author={Gopalan, Prem K and Blei, David M},
journal={Proceedings of the National Academy of Sciences},
volume={110},
number={36},
pages={14534--14539},
year={2013},
publisher={National Acad Sciences}
}
@article{roweis1999unifying,
title={A unifying review of linear {G}aussian models},
author={Roweis, Sam and Ghahramani, Zoubin},
journal={Neural computation},
volume={11},
number={2},
pages={305--345},
year={1999},
publisher={MIT Press}
}
@article{pachitariu2016kilosort,
title={Kilosort: realtime spike-sorting for extracellular electrophysiology with hundreds of channels},
author={Pachitariu, Marius and Steinmetz, Nicholas and Kadir, Shabnam and Carandini, Matteo and others},
journal={BioRxiv},
pages={061481},
year={2016},
publisher={Cold Spring Harbor Laboratory}
}
@article{pachitariu2023solving,
title={Solving the spike sorting problem with Kilosort},
author={Pachitariu, Marius and Sridhar, Shashwat and Stringer, Carsen},
journal={bioRxiv},
year={2023},
publisher={Cold Spring Harbor Laboratory}
}
@article{lee2020yass,
title={{YASS}: {Y}et Another Spike Sorter applied to large-scale multi-electrode array recordings in primate retina},
author={Lee, JinHyung and Mitelut, Catalin and Shokri, Hooshmand and Kinsella, Ian and Dethe, Nishchal and Wu, Shenghao and Li, Kevin and Reyes, Eduardo B and Turcu, Denis and Batty, Eleanor and others},
journal={bioRxiv},
year={2020},
publisher={Cold Spring Harbor Laboratory}
}
@article{chung2017fully,
title={A fully automated approach to spike sorting},
author={Chung, Jason E and Magland, Jeremy F and Barnett, Alex H and Tolosa, Vanessa M and Tooker, Angela C and Lee, Kye Y and Shah, Kedar G and Felix, Sarah H and Frank, Loren M and Greengard, Leslie F},
journal={Neuron},
volume={95},
number={6},
pages={1381--1394},
year={2017},
publisher={Elsevier}
}
@article{deng2015clusterless,
title={Clusterless decoding of position from multiunit activity using a marked point process filter},
author={Deng, Xinyi and Liu, Daniel F and Kay, Kenneth and Frank, Loren M and Eden, Uri T},
journal={Neural computation},
volume={27},
number={7},
pages={1438--1460},
year={2015},
publisher={MIT Press One Rogers Street, Cambridge, MA 02142-1209, USA journals-info~…}
}
@article{trautmann2019accurate,
title={Accurate estimation of neural population dynamics without spike sorting},
author={Trautmann, Eric M and Stavisky, Sergey D and Lahiri, Subhaneil and Ames, Katherine C and Kaufman, Matthew T and O’Shea, Daniel J and Vyas, Saurabh and Sun, Xulu and Ryu, Stephen I and Ganguli, Surya and others},
journal={Neuron},
volume={103},
number={2},
pages={292--308},
year={2019},
publisher={Elsevier}
}
@ARTICLE{lin2016genetically,
title = "Genetically encoded indicators of neuronal activity",
author = "Lin, Michael Z and Schnitzer, Mark J",
journal = "Nat. Neurosci.",
volume = 19,
number = 9,
pages = "1142--1153",
month = aug,
year = 2016,
language = "en"
}
@ARTICLE{Giovannucci2019-os,
title = "{CaImAn} an open source tool for scalable calcium imaging data
analysis",
author = "Giovannucci, Andrea and Friedrich, Johannes and Gunn, Pat and
Kalfon, J{\'e}r{\'e}mie and Brown, Brandon L and Koay, Sue Ann
and Taxidis, Jiannis and Najafi, Farzaneh and Gauthier, Jeffrey L
and Zhou, Pengcheng and Khakh, Baljit S and Tank, David W and
Chklovskii, Dmitri B and Pnevmatikakis, Eftychios A",
journal = "Elife",
volume = 8,
month = jan,
year = 2019,
keywords = "calcium imaging; data analysis; mouse; neuroscience; one-photon;
open source; software; two-photon; zebrafish",
language = "en"
}
@article{pachitariu2017suite2p,
title={Suite2p: {B}eyond 10,000 neurons with standard two-photon microscopy},
author={Pachitariu, Marius and Stringer, Carsen and Dipoppa, Mario and Schr{\"o}der, Sylvia and Rossi, L Federico and Dalgleish, Henry and Carandini, Matteo and Harris, Kenneth D},
journal={BioRxiv},
pages={061507},
year={2017},
publisher={Cold Spring Harbor Laboratory}
}
@article{pnevmatikakis2016simultaneous,
title={Simultaneous denoising, deconvolution, and demixing of calcium imaging data},
author={Pnevmatikakis, Eftychios A and Soudry, Daniel and Gao, Yuanjun and Machado, Timothy A and Merel, Josh and Pfau, David and Reardon, Thomas and Mu, Yu and Lacefield, Clay and Yang, Weijian and others},
journal={Neuron},
year={2016},
publisher={Elsevier}
}
@article{Vogelstein-2010,
title={Fast nonnegative deconvolution for spike train inference from population calcium imaging},
author={Vogelstein, Joshua T and Packer, Adam M and Machado, Timothy A and Sippy, Tanya and Babadi, Baktash and Yuste, Rafael and Paninski, Liam},
journal={Journal of Neurophysiology},
volume={104},
number={6},
pages={3691--3704},
year={2010},
publisher={American Physiological Society}
}
@article{zhou2018efficient,
title={Efficient and accurate extraction of in vivo calcium signals from microendoscopic video data},
author={Zhou, Pengcheng and Resendez, Shanna L and Rodriguez-Romaguera, Jose and Jimenez, Jessica C and Neufeld, Shay Q and Giovannucci, Andrea and Friedrich, Johannes and Pnevmatikakis, Eftychios A and Stuber, Garret D and Hen, Rene and others},
journal={elife},
volume={7},
pages={e28728},
year={2018},
publisher={eLife Sciences Publications Limited}
}
@ARTICLE{Jewell2018-tw,
title = "Exact spike train inference via $\ell_\{0\}$ optimization",
author = "Jewell, Sean and Witten, Daniela",
abstract = "Project Euclid - mathematics and statistics online",
journal = "Annals of Applied Statistics",
publisher = "Institute of Mathematical Statistics",
volume = 12,
number = 4,
pages = "2457--2482",
month = dec,
year = 2018,
keywords = "Neuroscience; calcium imaging; changepoint detection; dynamic
programming",
language = "en"
}
@ARTICLE{Tinbergen1963-fg,
title = "On aims and methods of Ethology",
author = "Tinbergen, N",
abstract = "Zusammenfassung Ich habe in diesem Aufsatz kurz anzudeuten
versucht, was meiner Ansicht nach das Wesentliche in
Fragestellung und Methode der Ethologie ist und weshalb wir in
Konrad Lorenz den Begr{\"u}nder moderner Ethologie erblicken.
Hierbei habe ich vielleicht das Arbeitsgebiet der Ethologie
weiter gefa{\ss}t, als unter Ethologen gebr{\"a}uchlich ist.
Wenn man aber die vielartige Arbeit jener Forscher
{\"u}bersieht, die sich Ethologen nennen, ist man zu dieser
weiten Fassung geradezu gezwungen. Ich habe in meiner
Darstellung weder Vollst{\"a}ndigkeit noch Gleichgewicht
angestrebt und, um zur Fortf{\"u}hrung des Gespr{\"a}chs
anzuregen, ruhig meine Steckenpferde geritten, vor allem das
Verh{\"a}ltnis zwischen Ethologie und Physiologie, die Gefahr
der Vernachl{\"a}ssigung der Frage der Arterhaltung, Fragen der
Methodik der ontogenetischen Forschung, und Aufgaben und
Methoden der Evolutionsforschung. Bei der Einsch{\"a}tzung des
Anteils, den Lorenz an der Entwicklung der Ethologie genommen
hat und noch nimmt, habe ich als seinen Hauptbeitrag den
bezeichnet, da{\ss} er uns gezeigt hat, wie man bew{\"a}hrtes
?biologisches Denken? folgerichtig auf Verhalten anwenden kann.
Da{\ss} er dabei an die Arbeit seiner Vorg{\"a}nger
angekn{\"u}pft hat, ist nicht mehr verwunderlich, als da{\ss}
jeder Vater selbst einen Vater hat. Insbesondere scheint mir das
Wesentliche an Lorenz? Arbeit zu sein, da{\ss} er klar gesehen
hat, da{\ss} Verhaltensweisen Teile von ?Organen?, von Systemen
der Arterhaltung sind; da{\ss} ihre Verursachung genau so exakt
untersucht werden kann wie die gleich welcher anderer
Lebensvorg{\"a}nge, da{\ss} ihr arterhaltender Wert ebenso
systematisch und exakt aufweisbar ist wie ihre Verursachung,
da{\ss} Verhaltensontogenie in grunds{\"a}tzlich gleicher Weise
erforscht werden kann wie die Ontogenie der Form und da{\ss} die
Erforschung der Verhaltensevolution der Untersuchung der
Strukturevolution parallel geht. Und obwohl Lorenz ein riesiges
Tatsachenmaterial gesammelt hat, ist die Ethologie doch noch
mehr durch seine Fragestellung und durch k{\"u}hne Hypothesen
gef{\"o}rdert als durch eigene Nachpr{\"u}fung dieser
Hypothesen. Ohne den Wert solcher Nachpr{\"u}fung zu
untersch{\"a}tzen ? ohne die es nat{\"u}rlich keine
Weiterentwicklung g{\"a}be ? m{\"o}chte ich doch behaupten,
da{\ss} die durch Nachpr{\"u}fung notwendig gewordenen
Modifikationen neben der Leistung des urspr{\"u}nglichen
Ansatzes vergleichsweise unbedeutend sind. Nebenbei sei auch
daran erinnert, da{\ss} eine der vielen heilsamen Nachwirkungen
der Lorenzschen Arbeit das wachsende Interesse ist, das die
Humanpsychologie der Ethologie entgegenbringt - ein erster
Ansatz einer Entwicklung, deren Tragweite wir noch kaum
{\"u}bersehen k{\"o}nnen. Am Schlu{\ss} noch eine Bemerkung zur
Terminologie. Ich habe hier das Wort ?Ethologie? auf einen
Riesenkomplex von Wissenschaften angewandt, von denen manche,
wie Psychologie und Physiologie, schon l{\"a}ngst anerkannte
Namen tragen. Das hei{\ss}t nat{\"u}rlich nicht, da{\ss} ich den
Namen Ethologie f{\"u}r dieses ganze Gebiet vorschlagen will;
das w{\"a}re geschichtlich einfach falsch, weil das Wort
historisch nur die Arbeit einer kleinen Gruppe von Zoologen
kennzeichnet. Der Name ist nat{\"u}rlich gleichg{\"u}ltig;
worauf es mir vor allem ankommt, ist darzutun, da{\ss} wir das
Zusammenwachsen vieler Einzeldisziplinen zu einer
vielumfassenden Wissenschaft erleben, f{\"u}r die es nur einen
richtigen Namen gibt: ?Verhaltensbiologie?.
Selbstverst{\"a}ndlich ist diese synthetische Entwicklung nicht
die Arbeit eines Mannes oder gar die der Ethologen. Sie ist die
Folge einer allgemeinen Neigung, Br{\"u}cken zwischen verwandten
Wissenschaften zu schlagen, einer Neigung, die sich in vielen
Disziplinen entwickelt hat. Unter den Zoologen ist es Lorenz,
der hierzu am meisten beigetragen und zudem manche
Nachbardisziplinen st{\"a}rker beeinflu{\ss}t hat als irgendein
anderer. Ich bin sogar davon {\"u}berzeugt, da{\ss} diese
Einwirkungen auf Nachbarwissenschaften noch lange anhalten
werden und da{\ss} die Verhaltensbiologie erst am Anfang ihrer
Ontogenie steht.",
journal = "Z. Tierpsychol.",
publisher = "Wiley",
volume = 20,
number = 4,
pages = "410--433",
year = 1963,
language = "en"
}
@ARTICLE{Datta2019-ji,
title = "Computational Neuroethology: A Call to Action",
author = "Datta, Sandeep Robert and Anderson, David J and Branson, Kristin
and Perona, Pietro and Leifer, Andrew",
abstract = "The brain is worthy of study because it is in charge of behavior.
A flurry of recent technical advances in measuring and
quantifying naturalistic behaviors provide an important
opportunity for advancing brain science. However, the problem of
understanding unrestrained behavior in the context of neural
recordings and manipulations remains unsolved, and developing
approaches to addressing this challenge is critical. Here we
discuss considerations in computational neuroethology-the science
of quantifying naturalistic behaviors for understanding the
brain-and propose strategies to evaluate progress. We point to
open questions that require resolution and call upon the broader
systems neuroscience community to further develop and leverage
measures of naturalistic, unrestrained behavior, which will
enable us to more effectively probe the richness and complexity
of the brain.",
journal = "Neuron",
volume = 104,
number = 1,
pages = "11--24",
month = oct,
year = 2019,
language = "en"
}
@ARTICLE{Anderson2014-lg,
title = "Toward a science of computational ethology",
author = "Anderson, David J and Perona, Pietro",
abstract = "The new field of ``Computational Ethology'' is made possible by
advances in technology, mathematics, and engineering that allow
scientists to automate the measurement and the analysis of animal
behavior. We explore the opportunities and long-term directions
of research in this area.",
journal = "Neuron",
volume = 84,
number = 1,
pages = "18--31",
month = oct,
year = 2014,
language = "en"
}
@ARTICLE{Mathis2018-uz,
title = "{DeepLabCut}: markerless pose estimation of user-defined body
parts with deep learning",
author = "Mathis, Alexander and Mamidanna, Pranav and Cury, Kevin M and
Abe, Taiga and Murthy, Venkatesh N and Mathis, Mackenzie
Weygandt and Bethge, Matthias",
abstract = "Quantifying behavior is crucial for many applications in
neuroscience. Videography provides easy methods for the
observation and recording of animal behavior in diverse
settings, yet extracting particular aspects of a behavior for
further analysis can be highly time consuming. In motor control
studies, humans or other animals are often marked with
reflective markers to assist with computer-based tracking, but
markers are intrusive, and the number and location of the
markers must be determined a priori. Here we present an
efficient method for markerless pose estimation based on
transfer learning with deep neural networks that achieves
excellent results with minimal training data. We demonstrate the
versatility of this framework by tracking various body parts in
multiple species across a broad collection of behaviors.
Remarkably, even when only a small number of frames are labeled
(~200), the algorithm achieves excellent tracking performance on
test frames that is comparable to human accuracy. Using a deep
learning approach to track user-defined body parts during
various behaviors across multiple species, the authors show that
their toolbox, called DeepLabCut, can achieve human accuracy
with only a few hundred frames of training data.",
journal = "Nat. Neurosci.",
publisher = "Nature Publishing Group",
volume = 21,
number = 9,
pages = "1281--1289",
month = aug,
year = 2018,
language = "en"
}
@article{pereira2022sleap,
title={{SLEAP}: {A} deep learning system for multi-animal pose tracking},
author={Pereira, Talmo D and Tabris, Nathaniel and Matsliah, Arie and Turner, David M and Li, Junyu and Ravindranath, Shruthi and Papadoyannis, Eleni S and Normand, Edna and Deutsch, David S and Wang, Z Yan and others},
journal={Nature methods},
volume={19},
number={4},
pages={486--495},
year={2022},
publisher={Nature Publishing Group US New York}
}
@ARTICLE{Graving2019-fq,
title = "{DeepPoseKit}, a software toolkit for fast and robust animal pose
estimation using deep learning",
author = "Graving, Jacob M and Chae, Daniel and Naik, Hemal and Li, Liang
and Koger, Benjamin and Costelloe, Blair R and Couzin, Iain D",
abstract = "Quantitative behavioral measurements are important for answering
questions across scientific disciplines-from neuroscience to
ecology. State-of-the-art deep-learning methods offer major
advances in data quality and detail by allowing researchers to
automatically estimate locations of an animal's body parts
directly from images or videos. However, currently available
animal pose estimation methods have limitations in speed and
robustness. Here, we introduce a new easy-to-use software
toolkit, DeepPoseKit, that addresses these problems using an
efficient multi-scale deep-learning model, called Stacked
DenseNet, and a fast GPU-based peak-detection algorithm for
estimating keypoint locations with subpixel precision. These
advances improve processing speed >2x with no loss in accuracy
compared to currently available methods. We demonstrate the
versatility of our methods with multiple challenging animal pose
estimation tasks in laboratory and field settings-including
groups of interacting individuals. Our work reduces barriers to
using advanced tools for measuring behavior and has broad
applicability across the behavioral sciences.",
journal = "Elife",
volume = 8,
month = oct,
year = 2019,
keywords = "D. melanogaster; Equus grevyi; Gr{\'e}vy's zebra; Schistocerca
gregaria; desert locust; neuroscience",
language = "en"
}
@ARTICLE{Wu2020-fi,
title = "Deep Graph Pose: a semi-supervised deep graphical model for
improved animal pose tracking",
author = "Wu, Anqi and Buchanan, Estefany Kelly and Whiteway, Matthew and
Schartner, Michael and Meijer, Guido and Noel, Jean-Paul and
Rodriguez, Erica and Everett, Claire and Norovich, Amy and
Schaffer, Evan and {Others}",
journal = "Adv. Neural Inf. Process. Syst.",
volume = 33,
year = 2020
}
@ARTICLE{Bala2020-ch,
title = "Automated markerless pose estimation in freely moving macaques
with {OpenMonkeyStudio}",
author = "Bala, Praneet C and Eisenreich, Benjamin R and Yoo, Seng Bum
Michael and Hayden, Benjamin Y and Park, Hyun Soo and Zimmermann,
Jan",
abstract = "The rhesus macaque is an important model species in several
branches of science, including neuroscience, psychology,
ethology, and medicine. The utility of the macaque model would be
greatly enhanced by the ability to precisely measure behavior in
freely moving conditions. Existing approaches do not provide
sufficient tracking. Here, we describe OpenMonkeyStudio, a deep
learning-based markerless motion capture system for estimating 3D
pose in freely moving macaques in large unconstrained
environments. Our system makes use of 62 machine vision cameras
that encircle an open 2.45 m $\times$ 2.45 m $\times$ 2.75 m
enclosure. The resulting multiview image streams allow for data
augmentation via 3D-reconstruction of annotated images to train a
robust view-invariant deep neural network. This view invariance
represents an important advance over previous markerless 2D
tracking approaches, and allows fully automatic pose inference on
unconstrained natural motion. We show that OpenMonkeyStudio can
be used to accurately recognize actions and track social
interactions.",
journal = "Nat. Commun.",
volume = 11,
number = 1,
pages = "4560",
month = sep,
year = 2020,
language = "en"
}
@ARTICLE{Machado2015-yi,
title = "A quantitative framework for whole-body coordination reveals
specific deficits in freely walking ataxic mice",
author = "Machado, Ana S and Darmohray, Dana M and Fayad, Jo{\~a}o and
Marques, Hugo G and Carey, Megan R",
abstract = "The coordination of movement across the body is a fundamental,
yet poorly understood aspect of motor control. Mutant mice with
cerebellar circuit defects exhibit characteristic impairments in
locomotor coordination; however, the fundamental features of
this gait ataxia have not been effectively isolated. Here we
describe a novel system (LocoMouse) for analyzing limb, head,
and tail kinematics of freely walking mice. Analysis of visibly
ataxic Purkinje cell degeneration (pcd) mice reveals that while
differences in the forward motion of individual paws are fully
accounted for by changes in walking speed and body size, more
complex 3D trajectories and, especially, inter-limb and
whole-body coordination are specifically impaired. Moreover, the
coordination deficits in pcd are consistent with a failure to
predict and compensate for the consequences of movement across
the body. These results isolate specific impairments in
whole-body coordination in mice and provide a quantitative
framework for understanding cerebellar contributions to
coordinated locomotion.",
journal = "Elife",
publisher = "elifesciences.org",
volume = 4,
month = oct,
year = 2015,
keywords = "Purkinje cell; ataxia; cerebellum; locomotion; mouse;
neuroscience",
language = "en"
}
@ARTICLE{Branson2009-mz,
title = "High-throughput ethomics in large groups of Drosophila",
author = "Branson, Kristin and Robie, Alice A and Bender, John and Perona,
Pietro and Dickinson, Michael H",
abstract = "We present a camera-based method for automatically quantifying
the individual and social behaviors of fruit flies, Drosophila
melanogaster, interacting in a planar arena. Our system includes
machine-vision algorithms that accurately track many individuals
without swapping identities and classification algorithms that
detect behaviors. The data may be represented as an ethogram that
plots the time course of behaviors exhibited by each fly or as a
vector that concisely captures the statistical properties of all
behaviors displayed in a given period. We found that behavioral
differences between individuals were consistent over time and
were sufficient to accurately predict gender and genotype. In
addition, we found that the relative positions of flies during
social interactions vary according to gender, genotype and social
environment. We expect that our software, which permits
high-throughput screening, will complement existing molecular
methods available in Drosophila, facilitating new investigations
into the genetic and cellular basis of behavior.",
journal = "Nat. Methods",
volume = 6,
number = 6,
pages = "451--457",
month = jun,
year = 2009,
language = "en"
}
% The entry below contains non-ASCII chars that could not be converted
% to a LaTeX equivalent.
@INPROCEEDINGS{He2016-rp,
title = "Deep residual learning for image recognition",
booktitle = "Proceedings of the {IEEE} conference on computer vision and
pattern recognition",
author = "He, Kaiming and Zhang, Xiangyu and Ren, Shaoqing and Sun, Jian",
abstract = "Deeper neural networks are more difficult to train. We present a
residual learning framework to ease the training of networks
that are substantially deeper than those used previously. We
explicitly reformulate the layers as learning residual functions
with reference to the layer …",
publisher = "openaccess.thecvf.com",
pages = "770--778",
year = 2016
}
@article{petersen2008matrix,
title={The matrix cookbook},
author={Petersen, Kaare Brandt and Pedersen, Michael Syskind and others},
journal={Technical University of Denmark},
volume={7},
number={15},
pages={510},
year={2008},
url={https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf}
}
@inproceedings{sutskever2013importance,
title={On the importance of initialization and momentum in deep learning},
author={Sutskever, Ilya and Martens, James and Dahl, George and Hinton, Geoffrey},
booktitle={International conference on machine learning},
pages={1139--1147},
year={2013},
organization={PMLR}
}
@article{duchi2011adaptive,
title={Adaptive subgradient methods for online learning and stochastic optimization.},
author={Duchi, John and Hazan, Elad and Singer, Yoram},
journal={Journal of Machine Learning Research},
volume={12},
number={7},
year={2011}
}
@article{kingma2014adam,
title={Adam: {A} method for stochastic optimization},
author={Kingma, Diederik P and Ba, Jimmy},
journal={arXiv preprint arXiv:1412.6980},
year={2014}
}
@misc{rmsprop,
title={Neural Networks for Machine Learning Lecture 6a},
author={Hinton, Geoffrey and Srivasta, Nitish and Swerskey, Kevin},
url={https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf},
year=2014,
}
@book{Goodfellow-et-al-2016,
title={Deep Learning},
author={Ian Goodfellow and Yoshua Bengio and Aaron Courville},
publisher={MIT Press},
note={\url{http://www.deeplearningbook.org}},
year={2016}
}
@article{marshall2021continuous,
title={Continuous whole-body 3D kinematic recordings across the rodent behavioral repertoire},
author={Marshall, Jesse D and Aldarondo, Diego E and Dunn, Timothy W and Wang, William L and Berman, Gordon J and {\"O}lveczky, Bence P},
journal={Neuron},
volume={109},
number={3},
pages={420--437},
year={2021},
publisher={Elsevier}
}
@article{felzenszwalb2005pictorial,
title={Pictorial structures for object recognition},
author={Felzenszwalb, Pedro F and Huttenlocher, Daniel P},
journal={International journal of computer vision},
volume={61},
pages={55--79},
year={2005},
publisher={Springer}
}
@inproceedings{insafutdinov2016deepercut,
title={Deepercut: {A} deeper, stronger, and faster multi-person pose estimation model},
author={Insafutdinov, Eldar and Pishchulin, Leonid and Andres, Bjoern and Andriluka, Mykhaylo and Schiele, Bernt},
booktitle={Computer Vision--ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part VI 14},
pages={34--50},
year={2016},
organization={Springer}
}
@article{dunn2021geometric,
title={Geometric deep learning enables 3D kinematic profiling across species and environments},
author={Dunn, Timothy W and Marshall, Jesse D and Severson, Kyle S and Aldarondo, Diego E and Hildebrand, David GC and Chettih, Selmaan N and Wang, William L and Gellis, Amanda J and Carlson, David E and Aronov, Dmitriy and others},
journal={Nature methods},
volume={18},
number={5},
pages={564--573},
year={2021},
publisher={Nature Publishing Group US New York}
}
@article{karashchuk2021anipose,
title={Anipose: a toolkit for robust markerless 3D pose estimation},
author={Karashchuk, Pierre and Rupp, Katie L and Dickinson, Evyn S and Walling-Bell, Sarah and Sanders, Elischa and Azim, Eiman and Brunton, Bingni W and Tuthill, John C},
journal={Cell reports},
volume={36},
number={13},
pages={109730},
year={2021},
publisher={Elsevier}
}
@article{nath2019using,
title={Using DeepLabCut for 3D markerless pose estimation across species and behaviors},
author={Nath, Tanmay and Mathis, Alexander and Chen, An Chi and Patel, Amir and Bethge, Matthias and Mathis, Mackenzie Weygandt},
journal={Nature protocols},
volume={14},
number={7},
pages={2152--2176},
year={2019},
publisher={Nature Publishing Group UK London}
}
@inproceedings{zhang2021animal,
title={Animal pose estimation from video data with a hierarchical von {M}ises-{F}isher-{G}aussian model},
author={Zhang, Libby and Dunn, Tim and Marshall, Jesse and Olveczky, Bence and Linderman, Scott},
booktitle={International Conference on Artificial Intelligence and Statistics},
pages={2800--2808},
year={2021},
organization={PMLR}
}
@article{wu2020deep,
title={Deep {G}raph {P}ose: a semi-supervised deep graphical model for improved animal pose tracking},
author={Wu, Anqi and Buchanan, Estefany Kelly and Whiteway, Matthew and Schartner, Michael and Meijer, Guido and Noel, Jean-Paul and Rodriguez, Erica and Everett, Claire and Norovich, Amy and Schaffer, Evan and others},
journal={Advances in Neural Information Processing Systems},
volume={33},
pages={6040--6052},
year={2020}
}
@article{whiteway2021partitioning,
title={Partitioning variability in animal behavioral videos using semi-supervised variational autoencoders},
author={Whiteway, Matthew R and Biderman, Dan and Friedman, Yoni and Dipoppa, Mario and Buchanan, E Kelly and Wu, Anqi and Zhou, John and Bonacchi, Niccol{\`o} and Miska, Nathaniel J and Noel, Jean-Paul and others},
journal={PLoS computational biology},
volume={17},
number={9},
pages={e1009439},
year={2021},
publisher={Public Library of Science San Francisco, CA USA}
}
@article{lauer2022multi,
title={Multi-animal pose estimation, identification and tracking with DeepLabCut},
author={Lauer, Jessy and Zhou, Mu and Ye, Shaokai and Menegas, William and Schneider, Steffen and Nath, Tanmay and Rahman, Mohammed Mostafizur and Di Santo, Valentina and Soberanes, Daniel and Feng, Guoping and others},
journal={Nature Methods},
volume={19},
number={4},
pages={496--504},
year={2022},
publisher={Nature Publishing Group US New York}
}
@article{markowitz2023spontaneous,
title={Spontaneous behaviour is structured by reinforcement without explicit reward},
author={Markowitz, Jeffrey E and Gillis, Winthrop F and Jay, Maya and Wood, Jeffrey and Harris, Ryley W and Cieszkowski, Robert and Scott, Rebecca and Brann, David and Koveal, Dorothy and Kula, Tomasz and others},
journal={Nature},
pages={1--10},
year={2023},
publisher={Nature Publishing Group UK London}
}
@article{pillow2008spatio,
title={Spatio-temporal correlations and visual signalling in a complete neuronal population},
author={Pillow, Jonathan W and Shlens, Jonathon and Paninski, Liam and Sher, Alexander and Litke, Alan M and Chichilnisky, EJ and Simoncelli, Eero P},
journal={Nature},
volume={454},
number={7207},
pages={995--999},
year={2008},
publisher={Nature Publishing Group UK London}
}
@article{mcintosh2016deep,
title={Deep learning models of the retinal response to natural scenes},
author={McIntosh, Lane and Maheswaranathan, Niru and Nayebi, Aran and Ganguli, Surya and Baccus, Stephen},
journal={Advances in Neural Information Processing Systems},
volume={29},
year={2016}
}
@article{goris2014partitioning,
title={Partitioning neuronal variability},
author={Goris, Robbe LT and Movshon, J Anthony and Simoncelli, Eero P},
journal={Nature neuroscience},
volume={17},
number={6},
pages={858--865},
year={2014},
publisher={Nature Publishing Group US New York}
}
@article{charles2018dethroning,
title={Dethroning the {F}ano factor: {A} flexible, model-based approach to partitioning neural variability},
author={Charles, Adam S and Park, Mijung and Weller, J Patrick and Horwitz, Gregory D and Pillow, Jonathan W},
journal={Neural computation},
volume={30},
number={4},
pages={1012--1045},
year={2018},
publisher={MIT Press One Rogers Street, Cambridge, MA 02142-1209, USA journals-info~…}
}
@book{mccullagh2019generalized,
title={Generalized linear models},
author={McCullagh, Peter and Nelder, John},
year={1983},
publisher={Routledge}
}
@article{paninski2004maximum,
title={Maximum likelihood estimation of cascade point-process neural encoding models},
author={Paninski, Liam},
journal={Network: Computation in Neural Systems},
volume={15},
number={4},
pages={243--262},
year={2004},
publisher={Taylor \& Francis}
}
@article{truccolo2005point,
title={A point process framework for relating neural spiking activity to spiking history, neural ensemble, and extrinsic covariate effects},
author={Truccolo, Wilson and Eden, Uri T and Fellows, Matthew R and Donoghue, John P and Brown, Emery N},
journal={Journal of neurophysiology},
volume={93},
number={2},
pages={1074--1089},
year={2005},
publisher={American Physiological Society}
}
@article{park2014encoding,
title={Encoding and decoding in parietal cortex during sensorimotor decision-making},
author={Park, Il Memming and Meister, Miriam LR and Huk, Alexander C and Pillow, Jonathan W},
journal={Nature neuroscience},
volume={17},
number={10},
pages={1395--1403},
year={2014},
publisher={Nature Publishing Group US New York}
}
@article{yates2017functional,
title={Functional dissection of signal and noise in {MT} and {LIP} during decision-making},
author={Yates, Jacob L and Park, Il Memming and Katz, Leor N and Pillow, Jonathan W and Huk, Alexander C},
journal={Nature neuroscience},
volume={20},
number={9},
pages={1285--1292},
year={2017},
publisher={Nature Publishing Group US New York}
}
@article{hardcastle2017multiplexed,
title={A multiplexed, heterogeneous, and adaptive code for navigation in medial entorhinal cortex},
author={Hardcastle, Kiah and Maheswaranathan, Niru and Ganguli, Surya and Giocomo, Lisa M},
journal={Neuron},
volume={94},
number={2},
pages={375--387},
year={2017},
publisher={Elsevier}
}
@article{vidne2012modeling,
title={Modeling the impact of common noise inputs on the network activity of retinal ganglion cells},
author={Vidne, Michael and Ahmadian, Yashar and Shlens, Jonathon and Pillow, Jonathan W and Kulkarni, Jayant and Litke, Alan M and Chichilnisky, EJ and Simoncelli, Eero and Paninski, Liam},
journal={Journal of computational neuroscience},
volume={33},
pages={97--121},
year={2012},
publisher={Springer}
}
@article{freeman2015mapping,
title={Mapping nonlinear receptive field structure in primate retina at single cone resolution},
author={Freeman, Jeremy and Field, Greg D and Li, Peter H and Greschner, Martin and Gunning, Deborah E and Mathieson, Keith and Sher, Alexander and Litke, Alan M and Paninski, Liam and Simoncelli, Eero P and others},
journal={Elife},
volume={4},
pages={e05241},
year={2015},
publisher={eLife Sciences Publications, Ltd}
}
@article{ramirez2014fast,
title={Fast inference in generalized linear models via expected log-likelihoods},
author={Ramirez, Alexandro D and Paninski, Liam},
journal={Journal of computational neuroscience},
volume={36},
pages={215--234},
year={2014},
publisher={Springer}
}
@article{zoltowski2018scaling,
title={Scaling the {P}oisson GLM to massive neural datasets through polynomial approximations},
author={Zoltowski, David and Pillow, Jonathan W},
journal={Advances in neural information processing systems},
volume={31},
year={2018}
}
@article{linderman2016bayesian,
title={Bayesian latent structure discovery from multi-neuron recordings},
author={Linderman, Scott and Adams, Ryan P and Pillow, Jonathan W},
journal={Advances in neural information processing systems},
volume={29},
year={2016}
}
@article{weber2017capturing,
title={Capturing the dynamical repertoire of single neurons with generalized linear models},
author={Weber, Alison I and Pillow, Jonathan W},
journal={Neural computation},
volume={29},
number={12},
pages={3260--3289},
year={2017},
publisher={MIT Press One Rogers Street, Cambridge, MA 02142-1209, USA journals-info~…}
}
@article{latimer2019inferring,
title={Inferring synaptic inputs from spikes with a conductance-based neural encoding model},
author={Latimer, Kenneth W and Rieke, Fred and Pillow, Jonathan W},
journal={Elife},
volume={8},
pages={e47012},
year={2019},
publisher={eLife Sciences Publications, Ltd}
}
@article{hawkes1971spectra,
title={Spectra of some self-exciting and mutually exciting point processes},
author={Hawkes, Alan G},
journal={Biometrika},
volume={58},
number={1},
pages={83--90},
year={1971},
publisher={Oxford University Press}
}