forked from skylinemarketing/kafka-streams-examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ProbabilisticCountingScalaIntegrationTest.scala
166 lines (144 loc) · 6.58 KB
/
ProbabilisticCountingScalaIntegrationTest.scala
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
/*
* Copyright Confluent Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package io.confluent.examples.streams
import java.util
import java.util.Properties
import io.confluent.examples.streams.algebird.{CMSStore, CMSStoreBuilder, ProbabilisticCounter}
import io.confluent.examples.streams.kafka.EmbeddedSingleNodeKafkaCluster
import org.apache.kafka.clients.consumer.ConsumerConfig
import org.apache.kafka.clients.producer.ProducerConfig
import org.apache.kafka.common.serialization._
import org.apache.kafka.streams.kstream.Transformer
import org.apache.kafka.streams.scala.StreamsBuilder
import org.apache.kafka.streams.scala.kstream.KStream
import org.apache.kafka.streams.{KafkaStreams, KeyValue, StreamsConfig}
import org.apache.kafka.test.TestUtils
import org.assertj.core.api.Assertions.assertThat
import org.junit._
import org.scalatest.junit.AssertionsForJUnit
/**
* End-to-end integration test that demonstrates how to probabilistically count items in an input stream.
*
* This example uses a custom state store implementation, [[CMSStore]], that is backed by a
* Count-Min Sketch data structure. The algorithm is WordCount.
*/
class ProbabilisticCountingScalaIntegrationTest extends AssertionsForJUnit {
import org.apache.kafka.streams.scala.Serdes._
import org.apache.kafka.streams.scala.ImplicitConversions._
private val privateCluster: EmbeddedSingleNodeKafkaCluster = new EmbeddedSingleNodeKafkaCluster
@Rule def cluster: EmbeddedSingleNodeKafkaCluster = privateCluster
private val inputTopic = "inputTopic"
private val outputTopic = "output-topic"
@Before
def startKafkaCluster() {
cluster.createTopic(inputTopic)
cluster.createTopic(outputTopic)
}
@Test
def shouldProbabilisticallyCountWords() {
val inputTextLines: Seq[String] = Seq(
"Hello Kafka Streams",
"All streams lead to Kafka",
"Join Kafka Summit"
)
val expectedWordCounts: Seq[KeyValue[String, Long]] = Seq(
("hello", 1L),
("kafka", 1L),
("streams", 1L),
("all", 1L),
("streams", 2L),
("lead", 1L),
("to", 1L),
("kafka", 2L),
("join", 1L),
("kafka", 3L),
("summit", 1L)
)
//
// Step 1: Configure and start the processor topology.
//
val streamsConfiguration: Properties = {
val p = new Properties()
p.put(StreamsConfig.APPLICATION_ID_CONFIG, "probabilistic-counting-scala-integration-test")
p.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, cluster.bootstrapServers())
// The commit interval for flushing records to state stores and downstream must be lower than
// this integration test's timeout (30 secs) to ensure we observe the expected processing results.
p.put(StreamsConfig.COMMIT_INTERVAL_MS_CONFIG, "10000")
p.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest")
// Use a temporary directory for storing state, which will be automatically removed after the test.
p.put(StreamsConfig.STATE_DIR_CONFIG, TestUtils.tempDirectory.getAbsolutePath)
p
}
val builder = new StreamsBuilder
val cmsStoreName = "cms-store"
builder.addStateStore(createCMSStoreBuilder(cmsStoreName))
// Read the input from Kafka.
val textLines: KStream[Array[Byte], String] = builder.stream[Array[Byte], String](inputTopic)
// previously: def transform[K1, V1](transformer: Transformer[K, V, (K1, V1)],
val approximateWordCounts: KStream[String, Long] = textLines
.flatMapValues(textLine => textLine.toLowerCase.split("\\W+"))
.transform(() => new ProbabilisticCounter(cmsStoreName), cmsStoreName)
// Write the results back to Kafka.
approximateWordCounts.to(outputTopic)
val streams: KafkaStreams = new KafkaStreams(builder.build(), streamsConfiguration)
streams.start()
//
// Step 2: Publish some input text lines.
//
val producerConfig: Properties = {
val p = new Properties()
p.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, cluster.bootstrapServers())
p.put(ProducerConfig.ACKS_CONFIG, "all")
p.put(ProducerConfig.RETRIES_CONFIG, "0")
p.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, classOf[ByteArraySerializer])
p.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, classOf[StringSerializer])
p
}
import collection.JavaConverters._
IntegrationTestUtils.produceValuesSynchronously(inputTopic, inputTextLines.asJava, producerConfig)
//
// Step 3: Verify the application's output data.
//
val consumerConfig = {
val p = new Properties()
p.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, cluster.bootstrapServers())
p.put(ConsumerConfig.GROUP_ID_CONFIG, "probabilistic-counting-consumer")
p.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest")
p.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, classOf[StringDeserializer])
p.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, classOf[LongDeserializer])
p
}
val actualWordCounts: java.util.List[KeyValue[String, Long]] =
IntegrationTestUtils.waitUntilMinKeyValueRecordsReceived(consumerConfig, outputTopic, expectedWordCounts.size)
streams.close()
// Note: This example only processes a small amount of input data, for which the word counts
// will actually be exact counts. However, for large amounts of input data we would expect to
// observe approximate counts (where the approximate counts would be >= true exact counts).
assertThat(actualWordCounts).containsExactlyElementsOf(expectedWordCounts.asJava)
}
private def createCMSStoreBuilder(cmsStoreName: String): CMSStoreBuilder[String] = {
val changelogConfig: util.HashMap[String, String] = {
val cfg = new java.util.HashMap[String, String]
// The CMSStore's changelog will typically have rather few and small records per partition.
// To improve efficiency we thus set a smaller log segment size than Kafka's default of 1GB.
val segmentSizeBytes = (20 * 1024 * 1024).toString
cfg.put("segment.bytes", segmentSizeBytes)
cfg
}
new CMSStoreBuilder[String](cmsStoreName, Serdes.String())
.withLoggingEnabled(changelogConfig)
}
}