-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathgraph_sampling.py
247 lines (208 loc) · 11.1 KB
/
graph_sampling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
import os
import pandas as pd
import argparse
import numpy as np
import random
import networkx
import torch
from networkx.algorithms import bipartite
import csv
from torch_geometric.utils.dropout import dropout_node, dropout_edge
def parse_args():
parser = argparse.ArgumentParser(description="Run graph sampling (Node Dropout, Edge Dropout).")
parser.add_argument('--dataset', nargs='?', default='gowalla', help='dataset name')
parser.add_argument('--filename', nargs='?', default='dataset.tsv', help='filename')
parser.add_argument('--sampling_strategies', nargs='+', type=str, default=['ND', 'ED'],
help='graph sampling strategy')
parser.add_argument('--num_samplings', nargs='?', type=int, default=600,
help='number of samplings')
parser.add_argument('--random_seed', nargs='?', type=int, default=42,
help='random seed for reproducibility')
return parser.parse_args()
args = parse_args()
def calculate_statistics(data, info):
# mapping users and items
num_users = torch.unique(data[0]).shape[0]
current_public_to_private_users = {u.item(): idx for idx, u in enumerate(torch.unique(data[0]))}
current_public_to_private_items = {i.item(): idx + num_users for idx, i in enumerate(torch.unique(data[1]))}
current_private_to_public_users = {idx: u for u, idx in current_public_to_private_users.items()}
current_private_to_public_items = {idx: i for i, idx in current_public_to_private_items.items()}
# rescale nodes indices to feed the edge_index into networkx
graph = networkx.Graph()
graph.add_nodes_from([idx for idx, _ in enumerate(torch.unique(data[0]))], bipartite='users')
graph.add_nodes_from([idx + num_users for idx, _ in enumerate(torch.unique(data[1]))], bipartite='items')
graph.add_edges_from(list(zip(
[current_public_to_private_users[u] for u in data[0].tolist()],
[current_public_to_private_items[i] for i in data[1].tolist()]))
)
if networkx.is_connected(graph):
# basic statistics
user_nodes, item_nodes = bipartite.sets(graph)
num_users = len(user_nodes)
num_items = len(item_nodes)
m = len(graph.edges())
delta_g = m / (num_users * num_items)
stats_dict = {
'users': num_users,
'items': num_items,
'interactions': m,
'delta_g': delta_g
}
info.update(stats_dict)
return info, None
else:
# take the subgraph with maximum extension
graph = graph.subgraph(max(networkx.connected_components(graph), key=len))
# basic statistics
user_nodes, item_nodes = bipartite.sets(graph)
num_users = len(user_nodes)
num_items = len(item_nodes)
m = len(graph.edges())
delta_g = m / (num_users * num_items)
connected_edges = list(graph.edges())
connected_edges = [[current_private_to_public_users[i] for i, j in connected_edges],
[current_private_to_public_items[j] for i, j in connected_edges]]
stats_dict = {
'users': num_users,
'items': num_items,
'interactions': m,
'delta_g': delta_g
}
info.update(stats_dict)
edge_index = torch.tensor([connected_edges[0], connected_edges[1]], dtype=torch.int64)
return info, edge_index
def set_all_seeds(current_seed):
random.seed(current_seed)
np.random.seed(current_seed)
torch.manual_seed(current_seed)
torch.cuda.manual_seed(current_seed)
torch.cuda.manual_seed_all(current_seed)
torch.backends.cudnn.deterministic = True
def graph_sampling():
# load public dataset
dataset = pd.read_csv(f'./data/{args.dataset}/{args.filename}', sep='\t', header=None)
initial_num_users = dataset[0].nunique()
initial_num_items = dataset[1].nunique()
initial_users = dataset[0].unique().tolist()
initial_items = dataset[1].unique().tolist()
# public --> private reindexing
public_to_private_users = {u: idx for idx, u in enumerate(initial_users)}
public_to_private_items = {i: idx + initial_num_users for idx, i in enumerate(initial_items)}
del initial_users, initial_items
# private --> public reindexing
private_to_public_users = {idx: u for u, idx in public_to_private_users.items()}
private_to_public_items = {idx: i for i, idx in public_to_private_items.items()}
# build undirected and bipartite graph with networkx
graph = networkx.Graph()
graph.add_nodes_from(list(range(initial_num_users)), bipartite='users')
graph.add_nodes_from(list(range(initial_num_users, initial_num_users + initial_num_items)),
bipartite='items')
graph.add_edges_from(list(zip(
[public_to_private_users[u] for u in dataset[0].tolist()],
[public_to_private_items[i] for i in dataset[1].tolist()]))
)
connected_graph = True
# if graph is not connected, retain only the biggest connected portion
if not networkx.is_connected(graph):
graph = graph.subgraph(max(networkx.connected_components(graph), key=len))
connected_graph = False
# calculate statistics
user_nodes, item_nodes = bipartite.sets(graph)
num_users = len(user_nodes)
num_items = len(item_nodes)
m = len(graph.edges())
delta_g = m / (num_users * num_items)
if connected_graph:
edges = [[public_to_private_users[r] for r in dataset[0].tolist()],
[public_to_private_items[c] for c in dataset[1].tolist()]]
edge_index = torch.tensor(edges, dtype=torch.int64)
del edges
else:
# the reindexing needs to be performed again
connected_users = [private_to_public_users[u] for u in user_nodes]
connected_items = [private_to_public_items[i] for i in item_nodes]
connected_edges = list(graph.edges())
connected_edges = [[private_to_public_users[i] for i, j in connected_edges],
[private_to_public_items[j] for i, j in connected_edges]]
dataset = pd.concat([pd.Series(connected_edges[0]), pd.Series(connected_edges[1])], axis=1)
del connected_edges
# the public --> private reindexing is performed again
public_to_private_users = {u: idx for idx, u in enumerate(connected_users)}
public_to_private_items = {i: idx + num_users for idx, i in enumerate(connected_items)}
del connected_users, connected_items
# the private --> public reindexing is performed again
private_to_public_users = {idx: u for u, idx in public_to_private_users.items()}
private_to_public_items = {idx: i for i, idx in public_to_private_items.items()}
edges = [[public_to_private_users[r] for r in dataset[0].tolist()],
[public_to_private_items[c] for c in dataset[1].tolist()]]
edge_index = torch.tensor(edges, dtype=torch.int64)
del edges
del graph
# print statistics
print(f'DATASET: {args.dataset}')
print(f'Number of users: {num_users}')
print(f'Number of items: {num_items}')
print(f'Number of interactions: {m}')
print(f'Density: {delta_g}')
filename_no_extension = args.filename.split('.')[0]
extension = args.filename.split('.')[1]
print('\n\nSTART GRAPH SAMPLING...')
with open(f'./data/{args.dataset}/sampling-stats.tsv', 'w') as f:
fieldnames = ['dataset_id',
'strategy',
'dropout',
'users',
'items',
'interactions',
'delta_g']
writer = csv.DictWriter(f, fieldnames=fieldnames, delimiter='\t')
writer.writeheader()
for idx in range(args.num_samplings):
set_all_seeds(args.random_seed + idx)
gss = random.choice(args.sampling_strategies)
dr = np.random.uniform(0.7, 0.9)
if gss == 'ND':
if not os.path.exists(f'./data/{args.dataset}/node-dropout/'):
os.makedirs(f'./data/{args.dataset}/node-dropout/')
print(f'\n\nRunning NODE DROPOUT with dropout ratio {dr}')
sampled_edge_index, _, _ = dropout_node(edge_index, p=dr, num_nodes=num_users + num_items)
current_stats_dict, sampled_graph = calculate_statistics(sampled_edge_index,
info={'dataset_id': idx,
'strategy': 'node dropout',
'dropout': dr})
if sampled_graph is not None:
sampled_rows = [private_to_public_users[r] for r in sampled_graph[0].tolist()]
sampled_cols = [private_to_public_items[c] for c in sampled_graph[1].tolist()]
else:
sampled_rows = [private_to_public_users[r] for r in sampled_edge_index[0].tolist()]
sampled_cols = [private_to_public_items[c] for c in sampled_edge_index[1].tolist()]
sampled_dataset = pd.concat([pd.Series(sampled_rows), pd.Series(sampled_cols)], axis=1)
sampled_dataset.to_csv(
f'./data/{args.dataset}/node-dropout/{filename_no_extension}-{idx}.{extension}',
sep='\t', header=None, index=None)
writer.writerow(current_stats_dict)
elif gss == 'ED':
if not os.path.exists(f'./data/{args.dataset}/edge-dropout/'):
os.makedirs(f'./data/{args.dataset}/edge-dropout/')
print(f'\n\nRunning EDGE DROPOUT with dropout ratio {dr}')
sampled_edge_index, _ = dropout_edge(edge_index, p=dr)
current_stats_dict, sampled_graph = calculate_statistics(sampled_edge_index,
info={'dataset_id': idx,
'strategy': 'edge dropout',
'dropout': dr})
if sampled_graph is not None:
sampled_rows = [private_to_public_users[r] for r in sampled_graph[0].tolist()]
sampled_cols = [private_to_public_items[c] for c in sampled_graph[1].tolist()]
else:
sampled_rows = [private_to_public_users[r] for r in sampled_edge_index[0].tolist()]
sampled_cols = [private_to_public_items[c] for c in sampled_edge_index[1].tolist()]
sampled_dataset = pd.concat([pd.Series(sampled_rows), pd.Series(sampled_cols)], axis=1)
sampled_dataset.to_csv(
f'./data/{args.dataset}/edge-dropout/{filename_no_extension}-{idx}.{extension}',
sep='\t', header=None, index=None)
writer.writerow(current_stats_dict)
else:
raise NotImplementedError('This graph sampling strategy has not been implemented yet!')
print('\n\nEND GRAPH SAMPLING...')
if __name__ == '__main__':
graph_sampling()