-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmap.py
569 lines (437 loc) · 26.6 KB
/
map.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
import math
import cmath
import copy
from turn import getTurns, getTeamScoring
from sr.robot import MARKER_TOKEN_SIDE, MARKER_TOKEN_BOTTOM, MARKER_TOKEN_TOP, MARKER_ARENA, MARKER_ROBOT, NET_A, NET_B, NET_C
from limits import mapToLimits, angleMod
from robot_1 import ZONE_0_INITIAL_CAMERA_LOCATION, ZONE_1_INITIAL_CAMERA_LOCATION, ZONE_2_INITIAL_CAMERA_LOCATION, ZONE_3_INITIAL_CAMERA_LOCATION, ROBOT_TO_CAMERA_VECTOR, ROBOT_TO_DEFAULT_CAMERA_YAW, ROBOT_TO_CAMERA_PITCH, ROBOT_TO_CAMERA_ROLL
ROBOT_WIDTH = 0.5
TOKEN_WIDTH = 0.25
# ROBOT_TO_CAMERA_VECTOR = {'alpha': 0, 'beta': 0, 'gamma': 0} #alpha forwards, beta left to right, gamma up
# ROBOT_TO_CAMERA_YAW = 0
# ROBOT_TO_CAMERA_PITCH = 0# -11 #deg
# ROBOT_TO_CAMERA_ROLL = 0 #1.7 #deg
# ZONE_0_INITIAL_CAMERA_LOCATION = {'x': 1, 'y': 7, 'z': 0.125, 'yaw': -45, 'pitch': 0, 'roll': 0, 'time': None}
# ZONE_1_INITIAL_CAMERA_LOCATION = {'x': 7, 'y': 7, 'z': 0.125, 'yaw': -135, 'pitch': 0, 'roll': 0, 'time': None}
# ZONE_2_INITIAL_CAMERA_LOCATION = {'x': 7, 'y': 1, 'z': 0.125, 'yaw': 135, 'pitch': 0, 'roll': 0, 'time': None}
# ZONE_3_INITIAL_CAMERA_LOCATION = {'x': 1, 'y': 1, 'z': 0.125, 'yaw': 45, 'pitch': 0, 'roll': 0, 'time': None}
STARTING_CUBE_0 = {'x': 2.5, 'y': 2.5, 'z': 0.125, 'yaw': 0, 'pitch': 0, 'roll': 0, 'time': None}
STARTING_CUBE_1 = {'x': 4, 'y': 2.5, 'z': 0.125, 'yaw': 0, 'pitch': 0, 'roll': 0, 'time': None}
STARTING_CUBE_2 = {'x': 5.5, 'y': 2.5, 'z': 0.125, 'yaw': 0, 'pitch': 0, 'roll': 0, 'time': None}
STARTING_CUBE_3 = {'x': 2.5, 'y': 4, 'z': 0.125, 'yaw': 0, 'pitch': 0, 'roll': 0, 'time': None}
STARTING_CUBE_4 = {'x': 4, 'y': 4, 'z': 0.125, 'yaw': 0, 'pitch': 0, 'roll': 0, 'time': None}
STARTING_CUBE_5 = {'x': 5.5, 'y': 4, 'z': 0.125, 'yaw': 0, 'pitch': 0, 'roll': 0, 'time': None}
STARTING_CUBE_6 = {'x': 2.5, 'y': 5.5, 'z': 0.125, 'yaw': 0, 'pitch': 0, 'roll': 0, 'time': None}
STARTING_CUBE_7 = {'x': 4, 'y': 5.5, 'z': 0.125, 'yaw': 0, 'pitch': 0, 'roll': 0, 'time': None}
STARTING_CUBE_8 = {'x': 5.5, 'y': 5.5, 'z': 0.125, 'yaw': 0, 'pitch': 0, 'roll': 0, 'time': None}
STARTING__ROBOT_0 = {'x': 1, 'y': 7, 'z': 0.125, 'yaw': -45, 'pitch': 0, 'roll': 0, 'time': None}
STARTING__ROBOT_1 = {'x': 7, 'y': 7, 'z': 0.125, 'yaw': -135, 'pitch': 0, 'roll': 0, 'time': None}
STARTING__ROBOT_2 = {'x': 7, 'y': 1, 'z': 0.125, 'yaw': 135, 'pitch': 0, 'roll': 0, 'time': None}
STARTING__ROBOT_3 = {'x': 1, 'y': 1, 'z': 0.125, 'yaw': 45, 'pitch': 0, 'roll': 0, 'time': None}
###########
## INITIAL LOCATION CODE #######################################################################################
################################################################################################################
################################################################################################################
################################################################################################################
def getInitialCameraLocation(zone, current_time): ##this method is not finished
if (zone == 0):
initial_camera_location = ZONE_0_INITIAL_CAMERA_LOCATION
elif (zone == 1):
initial_camera_location = ZONE_1_INITIAL_CAMERA_LOCATION
elif (zone == 2):
initial_camera_location = ZONE_2_INITIAL_CAMERA_LOCATION
else: #zone == 3
initial_camera_location = ZONE_3_INITIAL_CAMERA_LOCATION
initial_camera_location['time'] = current_time
return initial_camera_location
def getStartingCubeLocations(current_time):
starting_cube_locations = [STARTING_CUBE_0, STARTING_CUBE_1, STARTING_CUBE_2, STARTING_CUBE_3, STARTING_CUBE_4 , STARTING_CUBE_5 , STARTING_CUBE_6 , STARTING_CUBE_7 , STARTING_CUBE_8]
return starting_cube_locations
def getStartingRobotLocations(current_time):
robot_0 = STARTING__ROBOT_0
robot_0['time'] = current_time
robot_1 = STARTING__ROBOT_1
robot_1['time'] = current_time
robot_2 = STARTING__ROBOT_2
robot_2['time'] = current_time
robot_3 = STARTING__ROBOT_3
robot_3['time'] = current_time
starting_robot_locations = [robot_0, robot_1, robot_2, robot_3]
return starting_robot_locations
## MARKER HANDLER CODE #########################################################################################
################################################################################################################
################################################################################################################
################################################################################################################
class MarkerHandler():
def __init__(self, current_time):
self.current_time = current_time
self.marker_seen = False
self.marker_in_range_seen = False
self.markers = []
def addMarker(self, marker):
self.marker_seen = True
self.markers.append(marker)
def filterMarkersByDistance(self, max_distance):
for marker in self.markers:
if (marker.centre.polar.length > max_distance):
self.markers.remove(marker)
if (len(self.markers) != 0):
self.marker_in_range_seen = True
class ArenaMarkerHandler(MarkerHandler):
def processMarkers(self, initial_camera_location):
camera_locations = [initial_camera_location]
for marker in self.markers:
camera_location = cameraLocationFromArenaMarker(marker, self.current_time)
camera_locations.append(camera_location)
camera_location = getAverageLocation(camera_locations)
return camera_location
class RobotMarkerHandler(MarkerHandler):
def processMarkers(self, camera_location):
robot_locations = []
for marker in self.markers:
robot_location = objectLocationFromObjectMarker(marker, camera_location, self.current_time, ROBOT_WIDTH)
robot_locations.append(robot_location)
robot_location = getAverageLocation(robot_locations)
return robot_location
class TokenMarkerHandler(MarkerHandler):
def processMarkers(self, camera_location, zone):
token_locations = []
for marker in self.markers:
token_location = objectLocationFromObjectMarker(marker, camera_location, self.current_time, TOKEN_WIDTH, zone)
token_locations.append(token_location)
return token_locations
## AVERAGE LOCATION CODE #######################################################################################
################################################################################################################
################################################################################################################
################################################################################################################
def getAverageLocation(locations):
## Returns the average of the camera_location from the arenaMarker
average_location = copy.deepcopy(locations[0])
total_location_X = 0
total_location_Y = 0
total_location_Z = 0
total_yaw_unit_vector = (0 + 0j)
total_pitch_unit_vector = (0 + 0j)
total_roll_unit_vector = (0 + 0j)
number_of_locations = len(locations)
for location in locations:
total_location_X += location['x']
total_location_Y += location['y']
total_location_Z += location['z']
total_yaw_unit_vector += cmath.exp(1j * math.radians(location['yaw']))
total_pitch_unit_vector += cmath.exp(1j * math.radians(location['pitch']))
total_roll_unit_vector += cmath.exp(1j * math.radians(location['roll']))
average_location_X = total_location_X / number_of_locations
average_location_Y = total_location_Y / number_of_locations
average_location_Z = total_location_Z / number_of_locations
average_location_Yaw = math.degrees(cmath.phase(total_yaw_unit_vector))
average_location_Pitch = math.degrees(cmath.phase(total_pitch_unit_vector))
average_location_Roll = math.degrees(cmath.phase(total_roll_unit_vector))
# average_location = {'x': average_location_X, 'y': average_location_Y, 'z': average_location_Z, 'yaw': average_location_Yaw, 'pitch': average_location_Pitch, 'roll': average_location_Roll, 'time': time}
average_location['x'] = average_location_X
average_location['y'] = average_location_Y
average_location['z'] = average_location_Z
average_location['yaw'] = average_location_Yaw
average_location['pitch'] = average_location_Pitch
average_location['roll'] = average_location_Roll
return average_location
## OBJECT MARKER CODE ###########################################################################################
################################################################################################################
################################################################################################################
################################################################################################################
def objectLocationFromObjectMarker(object_marker, camera_location, current_time, object_width, zone = None, approach_distance = 1):
# SPHERICAL VECTOR REFERENCE: http://mathworld.wolfram.com/SphericalCoordinates.html
# first translate the p.x and p.y angles by the roll of the robot to line with the z axis of the area
# I have done this with a werid vector method, which I HOPE works
p_vector = (math.cos(math.radians(90 - object_marker.centre.polar.rot_y)) * math.sin(math.radians(90 - object_marker.centre.polar.rot_x)) + math.cos(math.radians(90 - object_marker.centre.polar.rot_x))*1j)
translated_vector = p_vector * cmath.exp(1j * math.radians(camera_location['roll']))
translated_PRX = 90 - math.degrees(math.acos(translated_vector.imag))
translated_PRY = 90 - math.degrees(math.acos(translated_vector.real / math.sin(math.acos(translated_vector.imag))))
# next I add the yaw and pitch to the translated values (THIS ONLY WORKES FOR SMALL PITCH, YAW, PRY OR PRX!! IT IS AN APPROXIMATION, i got stuck here) :(
#build a spherical vector
radial = object_marker.centre.polar.length
azimuthal = camera_location['yaw'] - translated_PRY
polar = 90 - translated_PRX - camera_location['pitch']
# cartesian vector
dX = radial * math.cos(math.radians(azimuthal)) * math.sin(math.radians(polar))
dY = radial * math.sin(math.radians(azimuthal)) * math.sin(math.radians(polar))
dZ = radial * math.cos(math.radians(polar))
# position of face
x = camera_location['x'] + dX
y = camera_location['y'] + dY
z = camera_location['z'] + dZ
yaw = camera_location['yaw'] + 180 - object_marker.orientation.rot_y
pitch = object_marker.orientation.rot_x - camera_location['pitch']
roll = - object_marker.orientation.rot_z - camera_location['roll']
# vector from face to center
radial = - object_width / 2
azimuthal = yaw
polar = 90 - pitch
dX = radial * math.cos(math.radians(azimuthal)) * math.sin(math.radians(polar))
dY = radial * math.sin(math.radians(azimuthal)) * math.sin(math.radians(polar))
dZ = radial * math.cos(math.radians(polar))
# position of center
x += dX
y += dY
z += dZ
time = current_time
object_location = {'x': x, 'y': y, 'z': z, 'yaw': yaw, 'pitch': pitch, 'roll': roll, 'time': time}
if (object_marker.info.marker_type == MARKER_TOKEN_TOP or object_marker.info.marker_type == MARKER_TOKEN_BOTTOM or object_marker.info.marker_type == MARKER_TOKEN_SIDE):
#vector from center to approach spot
net = object_marker.info.token_net
code = object_marker.info.code
team_scoring = getTeamScoring(net, roll, code)
object_location['team_scoring'] = team_scoring
turns = getTurns(net, roll, code, zone)
approach_locations = []
i = 0
for turn in turns:
if (turn[0] == True):
adX = approach_distance * math.cos(math.radians(azimuthal)) * math.sin(math.radians(polar))
adY = approach_distance * math.sin(math.radians(azimuthal)) * math.sin(math.radians(polar))
adZ = approach_distance * math.cos(math.radians(polar))
if (i == 0):
ax = x + adX
ay = y + adY
elif (i == 1):
ax = x - adY
ay = y + adX
elif (i == 2):
ax = x - adX
ay = y - adY
else: # i == 3
ax = x + adY
ay = y - adX
az = z + adZ
a_yaw = angleMod(yaw - 180 + (90 * i))
a_pitch = - pitch
a_roll = - roll
degrees = angleMod(turn[1] * 90)
approach_location = {'x': ax, 'y': ay, 'z': az, 'yaw': a_yaw, 'pitch': a_pitch, 'roll': a_roll, 'time': time, 'degrees': degrees}
approach_locations.append(approach_location)
i += 1
print "approach locations: " + str(approach_locations) + ", with (net, roll, code, zone) = (" + str(net) + ", " + str(roll) + ", "+ str(code) + ", " + str(zone) + ")"
object_location['approach'] = approach_locations
return object_location
## CAMERA LOCATION CODE ########################################################################################
################################################################################################################
################################################################################################################
################################################################################################################
def cameraLocationFromRobotLocation(robot_location, camera_rotation = 0):
robot_to_camera_yaw = ROBOT_TO_DEFAULT_CAMERA_YAW + camera_rotation
camera_location = copy.deepcopy(robot_location)
vector = getRobotLocationToCameraLocationVector(robot_location)
camera_location['x'] += vector['x']
camera_location['y'] += vector['y']
camera_location['z'] += vector['z']
camera_location['yaw'] += robot_to_camera_yaw
camera_location['pitch'] += ROBOT_TO_CAMERA_PITCH
camera_location['roll'] += ROBOT_TO_CAMERA_ROLL
return camera_location
def getRobotLocationToCameraLocationVector(robot_location):
dx = math.cos(math.radians(robot_location['yaw'])) * ROBOT_TO_CAMERA_VECTOR['alpha'] + math.sin(math.radians(robot_location['yaw'])) * ROBOT_TO_CAMERA_VECTOR['beta']
dy = math.sin(math.radians(robot_location['yaw'])) * ROBOT_TO_CAMERA_VECTOR['alpha'] - math.cos(math.radians(robot_location['yaw'])) * ROBOT_TO_CAMERA_VECTOR['beta']
dz = ROBOT_TO_CAMERA_VECTOR['gamma']
vector = {'x': dx, 'y': dy, 'z': dz}
return vector
def robotLocationFromCameraLocation(camera_location, camera_rotation = 0):
robot_to_camera_yaw = ROBOT_TO_DEFAULT_CAMERA_YAW + camera_rotation
robot_location = copy.deepcopy(camera_location)
robot_location['yaw'] -= robot_to_camera_yaw
robot_location['pitch'] -= ROBOT_TO_CAMERA_PITCH
robot_location['roll'] -= ROBOT_TO_CAMERA_ROLL
vector = getRobotLocationToCameraLocationVector(robot_location)
robot_location['x'] -= vector['x']
robot_location['y'] -= vector['y']
robot_location['z'] -= vector['z']
return robot_location
## ARENA MARKER CODE ###########################################################################################
################################################################################################################
################################################################################################################
################################################################################################################
def cameraLocationFromArenaMarker(arenaMarker, current_time):
## Returns the co-ordinates of the camera according to an arena marker by adding the arean marker vector to the arena marker location, in a direction depending on which wall it is on.
arena_marker_location = getArenaMarkerLocation(arenaMarker)
arena_marker_vector = getArenaMarkerVector(arenaMarker)
arena_marker_angles = getArenaMarkerAngles(arenaMarker)
if (arena_marker_location['wall'] == "Top"):
x = arena_marker_location['x'] + arena_marker_vector['alpha']
y = arena_marker_location['y'] - arena_marker_vector['beta']
yaw = arena_marker_angles['yaw'] + 90
elif (arena_marker_location['wall'] == "Right"):
x = arena_marker_location['x'] - arena_marker_vector['beta']
y = arena_marker_location['y'] - arena_marker_vector['alpha']
yaw = arena_marker_angles['yaw']
elif (arena_marker_location['wall'] == "Bottom"):
x = arena_marker_location['x'] - arena_marker_vector['alpha']
y = arena_marker_location['y'] + arena_marker_vector['beta']
yaw = arena_marker_angles['yaw'] - 90
else: #arena_marker_location['wall'] == "Left"
x = arena_marker_location['x'] + arena_marker_vector['beta']
y = arena_marker_location['y'] + arena_marker_vector['alpha']
yaw = arena_marker_angles['yaw'] - 180
z = arena_marker_location['z'] + arena_marker_vector['gamma']
pitch = arena_marker_angles['pitch']
roll = -arena_marker_angles['roll']
time = current_time
camera_location = {'x': x, 'y': y, 'z': z, 'yaw': yaw, 'pitch': pitch, 'roll': roll, 'time': time}
# print "camera_location acording to", arenaMarker.info.code, ": ", camera_location, " | with vector: ", arena_marker_vector
# print "camera_location acording to", arenaMarker.info.code, ": ", camera_location
return camera_location
def getArenaMarkerVector(arenaMarker):
## Returns the vector from the arena marker to the camera in the direction of the normal from the face of the arena marker.
## Alpha is the distance from the arena marker to the camera in the direction left to right facing the arena marker.
## Beta is the distance from the arena marker to the camera in the direction coming out of the face of the arena marker.
## Gamma is the distance from the arena marker to the camera in the direction bottom to top facing the arena marker.
side_angle = - arenaMarker.centre.polar.rot_x - arenaMarker.orientation.rot_x
top_angle = arenaMarker.orientation.rot_y - arenaMarker.centre.polar.rot_y
top_length = arenaMarker.centre.polar.length * math.cos(math.radians(side_angle))
alpha_before_z_rotation = top_length * math.sin(math.radians(top_angle))
gamma_before_z_rotation = arenaMarker.centre.polar.length * math.sin(math.radians(side_angle))
alpha = gamma_before_z_rotation * math.sin(math.radians(arenaMarker.orientation.rot_z)) + alpha_before_z_rotation * math.cos(math.radians(arenaMarker.orientation.rot_z))
beta = top_length * math.cos(math.radians(top_angle))
gamma = gamma_before_z_rotation * math.cos(math.radians(arenaMarker.orientation.rot_z)) - alpha_before_z_rotation * math.sin(math.radians(arenaMarker.orientation.rot_z))
#alpha = math.cos(math.radians(m.orientation.rot_z))*(m.centre.polar.length)*math.cos(math.radians(-m.centre.polar.rot_x -m.orientation.rot_x))*math.sin(math.radians(m.orientation.rot_y -m.centre.polar.rot_y)) + math.sin(math.radians(m.orientation.rot_z))*(m.centre.polar.length)*math.sin(math.radians(-m.centre.polar.rot_x -m.orientation.rot_x))
#beta = (m.centre.polar.length)*math.cos(math.radians(-m.centre.polar.rot_x -m.orientation.rot_x))*math.cos(math.radians(m.orientation.rot_y -m.centre.polar.rot_y))
#gamma = math.cos(math.radians(m.orientation.rot_z))*(m.centre.polar.length)*math.sin(math.radians(-m.centre.polar.rot_x -m.orientation.rot_x)) - math.sin(math.radians(m.orientation.rot_z))*(m.centre.polar.length)*math.cos(math.radians(-m.centre.polar.rot_x -m.orientation.rot_x))*math.sin(math.radians(m.orientation.rot_y -m.centre.polar.rot_y))
arena_marker_vector = {'alpha': alpha, 'beta': beta, 'gamma': gamma}
return arena_marker_vector
def getArenaMarkerAngles(arenaMarker):
yaw = arenaMarker.orientation.rot_y
pitch = arenaMarker.orientation.rot_x
roll = arenaMarker.orientation.rot_z
arena_marker_angles = {'yaw': yaw, 'pitch': pitch, 'roll': roll}
return arena_marker_angles
def getArenaMarkerLocation(arenaMarker):
## Returns the co-ordinates of a arena marker and which wall it is on.
arena_marker_offset = arenaMarker.info.offset
arena_marker_wall = getArenaMarkerWall(arena_marker_offset)
z = 0.175
if (arena_marker_wall == "Top"):
x = arena_marker_offset +1
y = 8
elif (arena_marker_wall == "Right"):
x = 8
y = 14 - arena_marker_offset
elif (arena_marker_wall == "Bottom"):
x = 21 - arena_marker_offset
y = 0
elif (arena_marker_wall == "Left"):
x = 0
y = arena_marker_offset - 20
arena_marker_location = {'x': x, 'y': y, 'z': z, 'wall': arena_marker_wall}
return arena_marker_location
def getArenaMarkerWall(arena_marker_offset):
## Returns which wall of the arena a arena marker is on.
if (arena_marker_offset < 7):
arena_marker_wall = "Top"
elif (arena_marker_offset < 14):
arena_marker_wall = "Right"
elif (arena_marker_offset < 21):
arena_marker_wall = "Bottom"
elif (arena_marker_offset < 28):
arena_marker_wall = "Left"
return arena_marker_wall
## CODE ########################################################################################################
################################################################################################################
################################################################################################################
################################################################################################################
#class MapHandler():
#
# def __init__(self, zone, current_time):
# self.camera_location = getInitialCameraLocation(zone, current_time)
# self.starting_cube_locations = getStartingCubeLocations(current_time)
# self.a_cube_locations = []
# self.b_cube_locations = []
# self.c_cube_locations = []
# self.robot_locations = getStartingRobotLocations(current_time)
#
# def filterCubes(self, current_time, maxAge = 1):
#
# for A in self.a_cube_locations:
# if ((current_time - A['time']) > maxAge):
# self.a_cube_locations.remove(A)
#
# for B in self.b_cube_locations:
# if ((current_time - B['time']) > maxAge):
# self.b_cube_locations.remove(B)
#
# for C in self.c_cube_locations:
# if ((current_time - C['time']) > maxAge):
# self.c_cube_locations.remove(C)
#
#
# def update(self, markers, current_time, zone):
# A = ArenaMarkerHandler(current_time)
#
# R0 = RobotMarkerHandler(current_time)
# R1 = RobotMarkerHandler(current_time)
# R2 = RobotMarkerHandler(current_time)
# R3 = RobotMarkerHandler(current_time)
#
# TA = TokenMarkerHandler(current_time)
# TB = TokenMarkerHandler(current_time)
# TC = TokenMarkerHandler(current_time)
#
# RList = [R0, R1, R2, R3]
#
# for marker in markers:
#
# if (marker.info.marker_type == MARKER_ARENA): # & (m.info.code < 28)
# A.addMarker(marker)
#
# elif (marker.info.marker_type == MARKER_ROBOT): # & (m.info.code > 27 & m.info.code < 32)
# #RList[marker.info.offset].addMarker(marker)
#
# if (marker.info.offset == 0):
# R0.addMarker(marker)
#
# elif(marker.info.offset == 1):
# R1.addMarker(marker)
#
# elif(marker.info.offset == 2):
# R2.addMarker(marker)
#
# elif (marker.info.offset == 3):
# R3.addMarker(marker)
#
# else:
# print "error: robot marker with offset != {0,1,2,3}"
#
# else: # MARKER_TOKEN
#
# if (marker.info.token_net == NET_A):
# TA.addMarker(marker)
#
# elif (marker.info.token_net == NET_B):
# TB.addMarker(marker)
#
# elif (marker.info.token_net == NET_C):
# TC.addMarker(marker)
#
# else:
# print "error: marker with undefined NET handled as token"
#
# if (A.marker_seen == True):
# self.camera_location = A.processMarkers()
#
# if (current_time - self.camera_location['time'] <= 1):
#
# i = 0
# for R in RList:
#
# if (R.marker_seen == True):
# self.robot_locations[i] = R.processMarkers(self.camera_location)
# i += 1
#
# if (TA.marker_seen == True):
# self.a_cube_locations.extend(TA.processMarkers(self.camera_location, zone))
#
# if (TB.marker_seen == True):
# self.b_cube_locations.extend(TB.processMarkers(self.camera_location, zone))
#
# if (TC.marker_seen == True):
# self.c_cube_locations.extend(TC.processMarkers(self.camera_location, zone))
#
#
# #print "camerLocation according to all markers: ", camera_location