-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path98.IsValidBST.cs
63 lines (57 loc) · 1.96 KB
/
98.IsValidBST.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
// 98. Validate Binary Search Tree
// Given the root of a binary tree, determine if it is a valid binary search tree (BST).
// A valid BST is defined as follows:
// The left subtree of a node contains only nodes with keys less than the node's key.
// The right subtree of a node contains only nodes with keys greater than the node's key.
// Both the left and right subtrees must also be binary search trees.
// Example 1:
// Input: root = [2,1,3]
// Output: true
// Example 2:
// Input: root = [5,1,4,null,null,3,6]
// Output: false
// Explanation: The root node's value is 5 but its right child's value is 4.
/**
* Definition for a binary tree node.
* public class TreeNode {
* public int val;
* public TreeNode left;
* public TreeNode right;
* public TreeNode(int val=0, TreeNode left=null, TreeNode right=null) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
public class Solution {
public bool IsValidBST(TreeNode root) {
return CheckBST(root, Int64.MinValue, Int64.MaxValue);
}
public bool CheckBST(TreeNode root, long min, long max)
{
if (root == null)
return true;
if (root.val >= max)
return false;
if (root.val <= min)
return false;
return CheckBST(root.left, min, root.val)
&& CheckBST(root.right, root.val, max);
}
}
public class Solution {
public bool IsValidBST(TreeNode root) {
return IsValidBST(root, Int64.MinValue, Int64.MaxValue);
}
//Current node should be in the range of min and max.
//Where current root will be the max for left subtree and min for right subtree
public bool IsValidBST(TreeNode root, long min, long max){
if(root == null)
return true;
if(root.val >= max || root.val <= min)
return false;
return IsValidBST(root.left, min, root.val) &&
IsValidBST(root.right, root.val, max);
}
}