-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path64.MinPathSum.cs
80 lines (71 loc) · 2.33 KB
/
64.MinPathSum.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
// 64. Minimum Path Sum
// Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right,
// which minimizes the sum of all numbers along its path.
// Note: You can only move either down or right at any point in time.
// Example 1:
// Input: grid = [[1,3,1],[1,5,1],[4,2,1]]
// Output: 7
// Explanation: Because the path 1 → 3 → 1 → 1 → 1 minimizes the sum.
// Example 2:
// Input: grid = [[1,2,3],[4,5,6]]
// Output: 12
public class Solution {
int[,] visited = new int[200, 200];
public int MinPathSum(int[][] grid)
{
//Initialise visited
for(int i=0;i< grid.Length; i++)
{
for(int j = 0;j< grid[0].Length; j++)
{
visited[i,j] = -1;
}
}
return PathSum(grid, 0, 0);
}
public int PathSum(int[][] grid, int i, int j)
{
// already visited
if (visited[i, j] > -1)
return visited[i, j];
int result;
// reached destination
if (i == grid.Length - 1 && j == grid[0].Length - 1)
result = grid[i][j];
//Last Row
else if (i == grid.Length - 1)
result = grid[i][j] + PathSum(grid, i, j + 1);
//Last Column
else if (j == grid[0].Length - 1)
result = grid[i][j] + PathSum(grid, i + 1, j);
//All others
else
result = grid[i][j] + Math.Min(PathSum(grid, i+1, j), PathSum(grid, i, j + 1));
visited[i,j] = result;
return result;
}
}
//DP Time O(mn) Space O(mn)
public class Solution {
public int MinPathSum(int[][] grid) {
int m = grid.Length;
int n = grid[0].Length;
// Initialise bottom-right corner
int[,] dp = new int[m, n];
dp[m-1, n-1] = grid[m-1][n-1];
// Initialise bottom row and right column
for (int i = m-2; i >= 0; i--) {
dp[i, n-1] = dp[i+1, n-1] + grid[i][n-1];
}
for (int j = n-2; j >= 0; j--) {
dp[m-1, j] = dp[m-1, j+1] + grid[m-1][j];
}
// Compute minimum path sum for each cell
for (int i = m-2; i >= 0; i--) {
for (int j = n-2; j >= 0; j--) {
dp[i, j] = grid[i][j] + Math.Min(dp[i+1, j], dp[i, j+1]);
}
}
return dp[0, 0];
}
}