-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path53.MaxSubArray.cs
75 lines (62 loc) · 1.98 KB
/
53.MaxSubArray.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
// 53. Maximum Subarray
// Given an integer array nums, find the contiguous subarray (containing at least one number) which has the largest sum and
// return its sum.
// A subarray is a contiguous part of an array.
// Example 1:
// Input: nums = [-2,1,-3,4,-1,2,1,-5,4]
// Output: 6
// Explanation: [4,-1,2,1] has the largest sum = 6.
// Example 2:
// Input: nums = [1]
// Output: 1
// Example 3:
// Input: nums = [5,4,-1,7,8]
// Output: 23
//kadens algo
public class Solution {
public int MaxSubArray(int[] nums) {
int max = Int32.MinValue;
int maxTillHere = 0;
for(int i = 0; i < nums.Length; i++){
maxTillHere += nums[i];
max = Math.Max(maxTillHere, max);
maxTillHere = Math.Max(maxTillHere, 0); //Add untill number is still positive
}
return max;
}
}
public class Solution {
public int MaxSubArray(int[] nums) {
int max = nums[0], sum = nums[0];
//Intuition: Add the current number to the sum till its positive and upudate the maximum sum
for(int i = 1; i < nums.Length; i++){
//If the sum is negative, reset it to 0
if(sum < 0)
sum = 0;
//Add the current number to the sum
sum += nums[i];
//Update the maximum sum
max = Math.Max(max, sum);
}
return max;
}
}
//prefixsum array
public class Solution {
public int MaxSubArray(int[] nums) {
int[] prefixsum = new int[nums.Length + 1];
prefixsum[0] = 0;
for(int i = 0; i < nums.Length; i++){
prefixsum[i+1] = prefixsum[i] + nums[i];
}
int max = nums[0];
for(int i = 1; i <= nums.Length; i++ ){
int s = 0;
for(int j = i; j <= nums.Length; j++){
s = prefixsum[j] - prefixsum[i-1]; // sum from i to j position
max = max > s ? max : s;
}
}
return max;
}
}