-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path2248.Intersection.cs
38 lines (33 loc) · 1.28 KB
/
2248.Intersection.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
// 2248. Intersection of Multiple Arrays
// Given a 2D integer array nums where nums[i] is a non-empty array of distinct positive integers, return the list of integers that are present in each array of nums sorted in ascending order.
// Example 1:
// Input: nums = [[3,1,2,4,5],[1,2,3,4],[3,4,5,6]]
// Output: [3,4]
// Explanation:
// The only integers present in each of nums[0] = [3,1,2,4,5], nums[1] = [1,2,3,4], and nums[2] = [3,4,5,6] are 3 and 4, so we return [3,4].
// Example 2:
// Input: nums = [[1,2,3],[4,5,6]]
// Output: []
// Explanation:
// There does not exist any integer present both in nums[0] and nums[1], so we return an empty list [].
// Constraints:
// 1 <= nums.length <= 1000
// 1 <= sum(nums[i].length) <= 1000
// 1 <= nums[i][j] <= 1000
// All the values of nums[i] are unique.
public class Solution {
public IList<int> Intersection(int[][] nums) {
HashSet<int> set = new HashSet<int>(nums[0]);
for(int i = 1; i < nums.Length; i++){
HashSet<int> tempSet = new();
for(int j =0; j < nums[i].Length; j++){
if(set.Contains(nums[i][j]))
tempSet.Add(nums[i][j]);
}
set = tempSet;
}
var result = set.ToList();
result.Sort();
return result;
}
}