-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathload_model.py
40 lines (32 loc) · 1.24 KB
/
load_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import sys
import torch
from models import get_model
from collections import OrderedDict
model_arch = 'UNetRNN'
model_path = "CRDN1000.pkl"
def load_model():
device = torch.device("cuda:{}".format(0) if torch.cuda.is_available() else "cpu")
try:
model = get_model({'arch': model_arch}, n_classes=2).to(device)
state = convert_state_dict(torch.load(model_path, map_location=device)["model_state"])
model.load_state_dict(state)
model.eval()
model.to(device)
except:
print("Model Error: Model \'" + model_arch + "\' import failed, please check the model file.")
sys.exit()
return model, device
def convert_state_dict(state_dict):
"""Converts a state dict saved from a dataParallel module to normal
module state_dict inplace
:param state_dict is the loaded DataParallel model_state
"""
if not next(iter(state_dict)).startswith("module."):
return state_dict # abort if dict is not a DataParallel model_state
new_state_dict = OrderedDict()
for k, v in state_dict.items():
item_name = k[7:] # remove `module.`
new_state_dict[item_name] = v
return new_state_dict
if __name__ == "__main__":
trained_model, device = load_model()