-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsupergraph_dfs.py
230 lines (205 loc) · 6.79 KB
/
supergraph_dfs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
#DFS implementation of Supergraph
import itertools
def directed_inc(G,D):
G_un = {}
# directed edges
for v in D:
G_un[v] = {}
for w in [el for el in D[v] if (0,1) in D[v][el]]:
for e in G[w]:
G_un[v][e] = set([(0,1)])
return G_un
def bidirected_inc(G,D):
# bidirected edges
for w in G:
# transfer old bidirected edges
l = [e for e in D[w] if (2,0) in D[w][e]]
for p in l:
if p in G[w]:
G[w][p].add((2,0))
else:
G[w][p] = set([(2,0)])
# new bidirected edges
l = [e for e in D[w] if (0,1) in D[w][e]]
for pair in itertools.permutations(l,2):
if pair[1] in G[pair[0]]:
G[pair[0]][pair[1]].add((2,0))
else:
G[pair[0]][pair[1]] = set([(2,0)])
return G
def increment_u(G_star, G_u):
# directed edges
G_un = directed_inc(G_star,G_u)
# bidirected edges
G_un = bidirected_inc(G_un,G_u)
return G_un
def undersample(G, u):
Gu = G
for i in range(u):
Gu = increment_u(G, Gu)
return Gu
def ok2addanedge1(s, e, g, g2,rate=1):
"""
s - start,
e - end
"""
# directed edges
for u in g:
if s in g[u] and not (e in g2[u] and (0,1) in g2[u][e]):
return False
for u in g[e]: # s -> Ch(e)
if not (u in g2[s] and (0,1) in g2[s][u]):return False
# bidirected edges
for u in g[s]: # e <-> Ch(s)
if u!=e and not (u in g2[e] and (2,0) in g2[e][u]):return False
return True
def ok2addanedge2(s, e, g, g2, rate=1):
mask = addanedge(g,(s,e))
value = undersample(g,rate) == g2
delanedge(g,(s,e),mask)
return value
def ok2addanedge(s, e, g, g2, rate=1):
f = [ok2addanedge1, ok2addanedge2]
return f[min([1,rate-1])](s,e,g,g2,rate=rate)
def addanedge(g,e):
'''
add edge e[0] -> e[1] to g
'''
mask = maskanedge(g,e)
g[e[0]][e[1]] = set([(0,1)])
return mask
def delanedge(g,e,mask):
'''
delete edge e[0] -> e[1] from g if it was not there before
'''
if not mask[0]: g[e[0]].pop(e[1], None)
def edgelist(g):
l = []
for n in g:
l.extend([(n,e) for e in g[n] if (0,1) in g[n][e]])
return l
def g2num(G): return int(graph2str(G),2)
def complement(g):
n = len(g)
sq = superclique(n)
for v in g:
for w in g[v]:
sq[v][w].difference_update(g[v][w])
if not sq[v][w]: sq[v].pop(w)
return sq
def superclique(n):
g = {}
for i in range(n):
g[str(i+1)] = {str(j+1):set([(0,1),(2,0)])
for j in range(n) if j!=i}
g[str(i+1)][str(i+1)] = set([(0,1)])
return g
def maskanedge(g,e): return [e[1] in g[e[0]]]
def graph2str(G):
n = len(G)
d = {((0,1),):'1', ((2,0),):'0',((2,0),(0,1),):'0',((0,1),(2,0),):'0'}
A = ['0']*(n*n)
for v in G:
for w in G[v]:
A[n*(int(v)-1)+int(w)-1] = d[tuple(G[v][w])]
return ''.join(A)
def supergraphs_in_eq(g, g2, rate):
if undersample(g,rate) != g2:
raise ValueError('g is not in equivalence class of g2')
s = set()
def addnodes(g,g2,edges):
if edges:
masks = []
for e in edges:
if ok2addanedge(e[0],e[1],g,g2,rate=rate):
masks.append(True)
else:
masks.append(False)
nedges = [edges[i] for i in range(len(edges)) if masks[i]]
n = len(nedges)
if n:
for i in range(n):
mask = addanedge(g,nedges[i])
s.add(g2num(g))
addnodes(g,g2,nedges[:i]+nedges[i+1:])
delanedge(g,nedges[i],mask)
edges = edgelist(complement(g))
addnodes(g,g2,edges)
for graph in s:
print graph
return s
def main():
#from page 3 of danks and plis paper
#g = {
#'1': {'1': set([(0, 1)]), '2': set([(0, 1)])},
#'2': {'3': set([(0, 1)])},
#'3': {'4': set([(0, 1)])},
#'4': {'1': set([(0, 1)])}
#}
#gu = undersample(g,1)
#supergraphs_in_eq(g, gu, 1) #no supergraphs!
#from email "a task for you"
#g = {
#'1': {'2': set([(0, 1)]), '4': set([(0, 1)]), '7': set([(0, 1)])},
#'2': {'3': set([(0, 1)]), '4': set([(0, 1)]), '7': set([(0, 1)])},
#'3': {'4': set([(0, 1)])},
#'4': {'1': set([(0, 1)]), '5': set([(0, 1)])},
#'5': {'1': set([(0, 1)]), '6': set([(0, 1)]), '8': set([(0, 1)])},
#'6': {'6': set([(0, 1)]), '7': set([(0, 1)])},
#'7': {'8': set([(0, 1)])},
#'8': {'1': set([(0, 1)]),'3': set([(0, 1)]),'4': set([(0, 1)]),'7': set([(0, 1)]),'8': set([(0, 1)])}
#}
#gu = undersample(g, 1)
#h is a supergraph in the equivalence class of g with the extra edge (5,7)
#h = {
#'1': {'2': set([(0, 1)]), '4': set([(0, 1)]), '7': set([(0, 1)])},
#'2': {'3': set([(0, 1)]), '4': set([(0, 1)]), '7': set([(0, 1)])},
#'3': {'4': set([(0, 1)])},
#'4': {'1': set([(0, 1)]), '5': set([(0, 1)])},
#'5': {'1': set([(0, 1)]), '6': set([(0, 1)]), '7': set([(0, 1)]), '8': set([(0, 1)])},
#'6': {'6': set([(0, 1)]), '7': set([(0, 1)])},
#'7': {'8': set([(0, 1)])},
#'8': {'1': set([(0, 1)]),'3': set([(0, 1)]),'4': set([(0, 1)]),'7': set([(0, 1)]),'8': set([(0, 1)])}
#}
#supergraphs_in_eq(g, gu, 1) #contains h! yay!
#from email
g = {
'1': {'2': set([(0, 1)])},
'2': {'3': set([(0, 1)]), '4': set([(0, 1)])},
'3': {'4': set([(0, 1)])},
'4': {'2': set([(0, 1)]), '4': set([(0, 1)]), '5': set([(0, 1)])},
'5': {'1': set([(0, 1)])}
}
g3 = undersample(g,2)
#h1-h4 are ALL the supergraphs of g that lead to the same g3
#h1 = {
#'1': {'2': set([(0, 1)]), '3': set([(0, 1)])},
#'2': {'3': set([(0, 1)]), '4': set([(0, 1)])},
#'3': {'4': set([(0, 1)])},
#'4': {'2': set([(0, 1)]), '4': set([(0, 1)]), '5': set([(0, 1)])},
#'5': {'1': set([(0, 1)])}
#}
#h2 = {
#'1': {'2': set([(0, 1)])},
#'2': {'3': set([(0, 1)]), '4': set([(0, 1)])},
#'3': {'2': set([(0, 1)]), '4': set([(0, 1)])},
#'4': {'2': set([(0, 1)]), '4': set([(0, 1)]), '5': set([(0, 1)])},
#'5': {'1': set([(0, 1)])}
#}
#h3 = {
#'1': {'2': set([(0, 1)])},
#'2': {'3': set([(0, 1)]), '4': set([(0, 1)])},
#'3': {'2': set([(0, 1)]), '4': set([(0, 1)]), '5': set([(0, 1)])},
#'4': {'2': set([(0, 1)]), '4': set([(0, 1)]), '5': set([(0, 1)])},
#'5': {'1': set([(0, 1)])}
#}
#h4 = {
#'1': {'2': set([(0, 1)])},
#'2': {'3': set([(0, 1)]), '4': set([(0, 1)])},
#'3': {'4': set([(0, 1)]), '5': set([(0, 1)])},
#'4': {'2': set([(0, 1)]), '4': set([(0, 1)]), '5': set([(0, 1)])},
#'5': {'1': set([(0, 1)])}
#}
supergraphs_in_eq(g, g3, 2) #h1-h4 are all found! yay!
if __name__ == "__main__":
main()