-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
129 lines (97 loc) · 4.51 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
# -*- coding: utf-8 -*-
# %matplotlib inline
import numpy as np
np.set_printoptions(suppress=True)
from shutil import copyfile
from importlib import reload
from abstractgame import AbstractGame
from game import Game
from agent import Agent
from memory import Memory
from model import Residual_CNN
from funcs import play_matches
import loggers as lg
from initialise import run_folder, run_archive_folder
import initialise
import pickle
import config
def main():
lg.logger_main.info('=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*')
lg.logger_main.info('=*=*=*=*=*=. NEW LOG =*=*=*=*=*')
lg.logger_main.info('=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*')
env: AbstractGame = Game()
# LOAD MEMORIES IF NECESSARY #
if initialise.INITIAL_MEMORY_VERSION is None:
memory = Memory()
else:
print('LOADING MEMORY VERSION ' + str(initialise.INITIAL_MEMORY_VERSION) + '...')
with (
run_archive_folder / env.name / "memory" / f"memory{initialise.INITIAL_MEMORY_VERSION:0>4}.p"
).open("rb") as f:
memory = pickle.load(f)
# LOAD MODEL IF NECESSARY #
# create an untrained neural network objects from the config file
current_nn = Residual_CNN(config.REG_CONST, config.LEARNING_RATE, env.input_shape, env.action_size,
config.HIDDEN_CNN_LAYERS)
best_nn = Residual_CNN(config.REG_CONST, config.LEARNING_RATE, env.input_shape, env.action_size,
config.HIDDEN_CNN_LAYERS)
# If loading an existing neural netwrok, set the weights from that model
if initialise.INITIAL_MODEL_VERSION is not None:
best_player_version = initialise.INITIAL_MODEL_VERSION
print('LOADING MODEL VERSION ' + str(initialise.INITIAL_MODEL_VERSION) + '...')
m_tmp = best_nn.read(env.name, best_player_version)
current_nn.model.set_weights(m_tmp.get_weights())
best_nn.model.set_weights(m_tmp.get_weights())
# otherwise, just ensure the weights on the two players are the same
else:
best_player_version = 0
best_nn.model.set_weights(current_nn.model.get_weights())
# copy the config file to the run folder
copyfile('./config.py', run_folder / 'config.py')
print('\n')
# CREATE THE PLAYERS #
current_player = Agent('current_player', env.state_size, env.action_size, config.MCTS_SIMS, config.CPUCT,
current_nn, best_player_version)
best_player = Agent('best_player', env.state_size, env.action_size, config.MCTS_SIMS, config.CPUCT, best_nn,
best_player_version)
iteration = initialise.INITIAL_RUN_NUMBER if initialise.INITIAL_RUN_NUMBER is not None else 0
while True:
iteration += 1
reload(lg)
reload(config)
print('ITERATION NUMBER ' + str(iteration))
lg.logger_main.info('BEST PLAYER VERSION: %d', best_player_version)
print('BEST PLAYER VERSION ' + str(best_player_version))
# SELF PLAY #
print('SELF PLAYING ' + str(config.EPISODES) + ' EPISODES...')
_, memory, _, _ = play_matches(best_player, best_player, config.EPISODES, lg.logger_main,
turns_until_tau0=config.TURNS_UNTIL_TAU0, memory=memory)
print('\n')
memory.clear_stmemory()
if iteration % 5 == 0:
with (run_folder / "memory" / f"memory{iteration:0>4}.p").open("wb") as f:
pickle.dump(memory, f)
if len(memory.ltmemory) >= 1000:
# RETRAINING #
print('RETRAINING...')
current_player.replay(memory.ltmemory)
print('')
# TOURNAMENT #
print('TOURNAMENT...')
scores, _, points, sp_scores = play_matches(best_player, current_player, config.EVAL_EPISODES,
lg.logger_tourney, turns_until_tau0=0, memory=None)
print('\nSCORES')
print(scores)
print('\nSTARTING PLAYER / NON-STARTING PLAYER SCORES')
print(sp_scores)
# print(points)
print('\n\n')
if scores['current_player'] > scores['best_player'] * config.SCORING_THRESHOLD:
best_player_version += 1
best_nn.model.set_weights(current_nn.model.get_weights())
best_nn.write(env.name, best_player_version)
best_player.version = best_player_version
else:
print('MEMORY SIZE: ' + str(len(memory.ltmemory)))
if __name__ == "__main__":
main()