-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathabstractgame.py
75 lines (55 loc) · 1.72 KB
/
abstractgame.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
from abc import ABC, abstractmethod
from logging import Logger
from typing import Optional, Generic, TypeVar, Tuple
import numpy as np
import tensorflow as tf
class AbstractGameState(ABC):
def __init__(self, board: np.ndarray, player_turn: int):
self.player_turn: int = player_turn
self.board: np.ndarray = board
@property
@abstractmethod
def binary(self) -> tf.Tensor:
pass
@property
@abstractmethod
def is_end_game(self) -> bool:
pass
@property
@abstractmethod
def allowed_actions(self) -> list:
pass
@property
@abstractmethod
def value(self) -> Tuple[int, int, int]:
pass
@property
@abstractmethod
def id(self) -> str:
pass
@property
def score(self) -> Tuple[int, int]:
a, b, _ = self.value
return a, b
@abstractmethod
def render(self, logger: Optional[Logger]) -> Optional[str]:
pass
def take_action(self, action: int) -> Tuple["AbstractGameState", float, int]:
new_board = np.copy(self.board)
new_board[action] = self.player_turn
new_state = self.__class__(new_board, -self.player_turn)
value = 0
done = 0
if new_state.is_end_game:
value = new_state.value[0]
done = 1
return new_state, value, done
_TGameState = TypeVar('_TGameState', covariant=True, bound=AbstractGameState)
class AbstractGame(Generic[_TGameState], ABC):
input_shape = np.array([], dtype=np.int32)
state_size = 0
action_size = 0
name = ""
def __init__(self, current_player: int, game_state: _TGameState):
self.current_player = current_player
self.game_state: _TGameState = game_state