-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathspikes.py
466 lines (377 loc) · 25.5 KB
/
spikes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
import sys
import math
import numpy as np
import matplotlib.pyplot as plt
from data_analysis.lfp import LFP
from data_analysis.tracking import Tracking
from data_analysis.spikes_basics import SpikesBase, load_spikes
class ExpSpikes(SpikesBase):
"""Class for loading and holding spiking data from the datasets published by Mizuseki et al., 2014.
The folder structure and file names of the dataset must be left unaltered for this class to work properly.
Args:
data_path (string): Path to the data.
dataset (string): Name of the dataset, e.g., hc-3.
session_set (string): Name of the set of sessions that get lumped together, e.g., ec013.28.
session (string): Name of the session, e.g., ec013.412.
region (string): Brain region in which the electrodes were placed (as per the metadata table).
cell_type (string): Cell type (as by the metadata table).
diba_clusters (bool): Use Kamran Diba's clustering.
"""
dependencies = (LFP,)
def __init__(self, super_group_name, group_name, child_name, data_path, dataset, session_set, session,
discarded_intervals=(), region='CA1', cell_type='p', diba_clusters=False):
super().__init__(super_group_name, group_name, child_name)
self.spikes = load_spikes(data_path, dataset, session_set, session, discarded_intervals, region,
cell_type, diba_clusters)
def discard_no_theta(self, lfp):
"""Discard spikes that occur during periods without significant theta oscillations.
Args:
lfp (LFP): LFP instance.
"""
for pair_num, electrode_cluster_pair in enumerate(self.spikes.electrode_cluster_pairs):
electrode_index = self.spikes.electrodes.index(electrode_cluster_pair[0])
clean_spikes = []
for spike_time in self.spikes.spike_times[pair_num]:
if lfp.at_time(spike_time, electrode_index, return_significance=True)[0]:
clean_spikes.append(spike_time)
self.spikes.spike_times[pair_num] = np.array(clean_spikes)
@classmethod
def default_initialization(cls, super_group_name, group_name, child_name, parameters_dict, save_figures=False,
figure_format="png", figures_path="", pickle_results=False, pickles_path="", **kwargs):
spikes = cls(super_group_name, group_name, child_name, kwargs['data_path'],
parameters_dict['dataset'], parameters_dict['session_set'], parameters_dict['session'],
parameters_dict['discarded_intervals'], parameters_dict['region'], parameters_dict['cell_type'])
spikes.discard_no_theta(kwargs['LFP'])
return spikes
class ModelSpikes(SpikesBase):
dependencies = (LFP, Tracking)
def __init__(self, super_group_name, group_name, child_name, lfp, tracking, num_cells, ds, dt,
phase_range, phase_current, firing_rate_0, firing_rage_slope, theta_modulation, field_centers=None,
save_figures=False, figure_format="png", figures_path="figures"):
super().__init__(super_group_name, group_name, child_name, save_figures, figure_format, figures_path)
self.lfp = lfp
self.tracking = tracking
self.num_cells = num_cells
self.spikes.spike_times = [[] for _ in range(num_cells)]
self.spikes.electrodes = [0]
self.spikes.electrode_cluster_pairs = [[0, field_num] for field_num in range(num_cells)]
self.ds = ds
self.track_length = np.nanmax(tracking.d)
self.num_spatial_bins = int(round(self.track_length/self.ds) + 1)
if field_centers is None:
self.field_centers = np.linspace(self.tracking.d_runs_offset,
self.tracking.d_runs_offset + self.tracking.d_runs_span, num_cells)
elif type(field_centers) == list and len(field_centers) == num_cells:
self.field_centers = field_centers
else:
sys.exit("field_centers must be None or match the number of cells!")
self.fields = np.zeros((2, self.num_spatial_bins, num_cells))
self.field_sigmas = None
self.field_activations = None
self.dt = dt
self.phase_range = phase_range
self.phase_range_extent = self.phase_range[1] - self.phase_range[0]
self.phase_current = phase_current
self.firing_rate_0 = firing_rate_0
self.firing_rate_slope = firing_rage_slope
self.theta_modulation = theta_modulation
self.times = None
self.positions = None
self.theta_phases = None
def define_fields(self):
x = np.arange(0, self.num_spatial_bins)
for run_type in range(2):
for field_num, (field_center, field_sigma) in enumerate(zip(self.field_centers, self.field_sigmas[run_type])):
center = field_center/self.ds
field_sigma_squared = (field_sigma / self.ds) ** 2
self.fields[run_type, :, field_num] = np.exp(-np.square(x - center) / 2 / field_sigma_squared)
def before_loop(self):
pass
def inside_loop(self, time_step, time, run_type, speed):
"""Must compute self.field_activations.
"""
pass
def generate_spikes(self, time_interval=(), lfp_channel_index=0):
if time_interval:
self.times = np.arange(time_interval[0], time_interval[1] + self.dt, self.dt)
else:
self.times = np.arange(self.tracking.times[0], min(self.tracking.times[-1], self.lfp.times[-1]), self.dt)
self.positions = np.empty(self.times.size)
self.theta_phases = np.empty(self.times.size)
self.before_loop()
for time_step, time in enumerate(self.times):
if time % 100 == 0:
print(f"generating spikes at time {int(time)}s (/{self.times[-1]}s)")
self.positions[time_step], run_type, speed, significant_theta = \
self.tracking.at_time(time, return_speed=True, return_significant_theta=True)
self.theta_phases[time_step], = self.lfp.at_time(time, lfp_channel_index, return_phase=True)
if run_type != -1 and significant_theta and not np.isnan(speed):
if self.phase_range[0] <= self.theta_phases[time_step] <= self.phase_range[1]:
self.inside_loop(time_step, time, run_type, speed)
if self.field_activations is not None:
firing_rate = self.firing_rate_0 + self.firing_rate_slope * speed
for field_index in np.nonzero(np.random.random(self.num_cells) <
firing_rate * self.dt * self.field_activations)[0]:
self.spikes.spike_times[field_index].append(time)
def plot(self, time_interval):
first_index = int((time_interval[0] - self.times[0]) / self.dt)
last_index = int((time_interval[1] - self.times[0]) / self.dt)
times = self.times[first_index:last_index]
fig, ax = plt.subplots(2, 3, figsize=(9, 6), sharex='col', sharey='row',
gridspec_kw={'height_ratios': [4, 1], 'width_ratios': [6, 1, 1]}, num='trajectories')
ax[1, 1].axis('off')
ax[1, 2].axis('off')
# plot trajectory
ax[0, 0].set_ylabel('Position (m)')
ax[0, 0].plot(times, self.positions[first_index:last_index], 'k', label='actual path')
self.plot_extra(ax, first_index, last_index, times)
# plot spikes
colors = plt.rcParams['axes.prop_cycle'].by_key()['color']
for field_num, field_spike_times in enumerate(self.spikes.spike_times):
field_spike_times = np.array(field_spike_times)
valid_spike_times = (field_spike_times[(field_spike_times > time_interval[0])
& (field_spike_times < time_interval[1])])
ax[0, 0].plot(valid_spike_times, np.ones(len(valid_spike_times))*self.field_centers[field_num], '|',
markeredgewidth=1.5, color=colors[field_num % len(colors)])
ax[0, 0].legend(loc='lower right')
# plot place fields
for run_type in range(2):
for field_num in range(self.fields.shape[-1]):
ax[0, run_type + 1].plot(self.fields[run_type, :, field_num],
np.arange(0, self.num_spatial_bins) * self.ds)
ax[0, run_type + 1].set_xlabel(f"'True'\nplace fields\n{'^' if run_type == 0 else 'v'}")
# plot theta oscillation
ax[1, 0].set_xlabel('Time (s)')
ax[1, 0].set_ylabel('Theta\nphase\n(deg)')
ax[1, 0].plot(times, self.theta_phases[first_index:last_index], 'k')
fig.align_ylabels()
plt.tight_layout()
self.maybe_save_fig(fig, "spike_generation")
def plot_extra(self, ax, first_index, last_index, times):
pass
class UniformSpikes(ModelSpikes):
def __init__(self, super_group_name, group_name, child_name, lfp, tracking, num_cells, field_sigma, ds, dt,
phase_range, phase_current, theta_time, theta_distance, firing_rate_0, firing_rage_slope,
theta_modulation, save_figures=False, figure_format="png", figures_path="figures"):
super().__init__(super_group_name, group_name, child_name, lfp, tracking, num_cells, ds, dt, phase_range,
phase_current, firing_rate_0, firing_rage_slope, theta_modulation, save_figures=save_figures,
figure_format=figure_format, figures_path=figures_path)
self.theta_paths = None
self.theta_time = theta_time
self.theta_distance = theta_distance
self.field_sigmas = np.ones((2, self.num_cells)) * field_sigma
self.define_fields()
def before_loop(self):
self.theta_paths = np.full(self.times.size, np.nan)
def inside_loop(self, time_step, time, run_type, speed):
relative_phase = (self.theta_phases[time_step] - self.phase_current) / self.phase_range_extent
travelling_time = time + relative_phase * self.theta_time
travelling_time = max(min(travelling_time, self.tracking.times[-1]), 0)
self.theta_paths[time_step] = self.tracking.at_time(travelling_time)[0]
if self.theta_distance != 0 and run_type == 0:
self.theta_paths[time_step] += relative_phase * self.theta_distance
elif self.theta_distance != 0: # (and run_type == 1)
self.theta_paths[time_step] -= relative_phase * self.theta_distance
# calculate field activations
self.field_activations = None
if not np.isnan(self.theta_paths[time_step]):
spatial_bin = int(round(self.theta_paths[time_step] / self.ds))
if 0 <= spatial_bin < self.num_spatial_bins:
theta = np.cos(self.theta_phases[time_step] / 180 * np.pi)
self.field_activations = self.fields[run_type, spatial_bin] * (
(-theta + 1) / 2 * self.theta_modulation + (1 - self.theta_modulation))
def plot_extra(self, ax, first_index, last_index, times):
# plot theta paths
nan_threshold = 180
nan_indices = np.nonzero(np.abs(np.diff(self.theta_phases[first_index:last_index])) > nan_threshold)[0] + 1
time_points = np.insert(times, nan_indices, np.nan)
theta_paths = np.insert(self.theta_paths[first_index:last_index], nan_indices, np.nan)
ax[0, 0].plot(time_points, theta_paths, 'C7', label='theta paths')
ax[0, 0].legend(loc="lower right")
@classmethod
def default_initialization(cls, super_group_name, group_name, child_name, parameters_dict, save_figures=False,
figure_format="png", figures_path="", pickle_results=False, pickles_path="", **kwargs):
model_spikes = cls(super_group_name, group_name, child_name, kwargs['LFP'], kwargs['Tracking'],
parameters_dict["num_cells"], parameters_dict["field_sigma"], parameters_dict["ds"],
parameters_dict["dt"], parameters_dict["phase_range"], parameters_dict["phase_current"],
parameters_dict["theta_time"], parameters_dict["theta_distance"],
parameters_dict["firing_rate_0"], parameters_dict["firing_rate_slope"],
parameters_dict["theta_modulation"], save_figures, figure_format, figures_path)
model_spikes.generate_spikes()
return model_spikes
class VariableSpikes(ModelSpikes):
"""Each field has its own fixed theta distance based on the characteristic speed through the field.
Also OK for variable noise model.
"""
def __init__(self, super_group_name, group_name, child_name, lfp, tracking, num_cells, ds, dt,
phase_range, phase_current, firing_rate_0, firing_rage_slope, theta_modulation, phase_sigma_0,
exponential_factor, save_figures=False, figure_format="png", figures_path="figures"):
super().__init__(super_group_name, group_name, child_name, lfp, tracking, num_cells, ds, dt, phase_range,
phase_current, firing_rate_0, firing_rage_slope, theta_modulation, save_figures=save_figures,
figure_format=figure_format, figures_path=figures_path)
self.theta_distances = []
self.field_sigmas = []
self.phase_sigma_0 = phase_sigma_0
self.exponential_factor = exponential_factor
def field_sigmas_from_theta_d(self, size_to_theta_d, size_min, size_sigma):
return np.maximum(size_min, self.theta_distances * size_to_theta_d
+ np.random.normal(0, size_sigma, size=(2, self.num_cells)))
def plot_field_params(self, x_values, x_label, name):
fig, ax = plt.subplots(2)
for run_type, run_type_name in enumerate(self.tracking.run_type_names):
ax[0].plot(x_values[run_type], self.theta_distances[run_type], 'o', label=run_type_name.lower())
ax[1].plot(x_values[run_type], self.field_sigmas[run_type], 'o', label=run_type_name.lower())
ax[0].set_ylabel("Theta distance (cm)")
ax[1].set_ylabel("Field sigma (cm)")
ax[1].set_xlabel(x_label)
ax[0].legend()
ax[1].legend()
self.maybe_save_fig(fig, name)
def fields_from_characteristic_speed(self, theta_d_slope, theta_d_offset, theta_d_min, theta_d_add_sigma,
theta_d_mul_sigma, size_to_theta_d, size_min, size_add_sigma, plot=True):
selected_mean_speeds = \
self.tracking.characteristic_speeds[:, np.round((self.field_centers - self.tracking.d_runs_offset)
/ self.tracking.spatial_bin_size).astype(int)]
self.theta_distances = np.maximum((theta_d_offset + theta_d_slope * selected_mean_speeds)
* np.random.normal(1, theta_d_mul_sigma, size=(2, self.num_cells))
+ np.random.normal(0, theta_d_add_sigma, size=(2, self.num_cells)),
theta_d_min)
self.field_sigmas = self.field_sigmas_from_theta_d(size_to_theta_d, size_min, size_add_sigma)
self.define_fields()
if plot:
self.plot_field_params(selected_mean_speeds, "Characteristic speed (cm/s)", "speed_field_params")
def fields_from_arc(self, theta_d_offset, theta_d_peak, theta_d_min, theta_d_sigma, size_to_theta_d, size_min,
size_sigma, plot=True):
r = self.tracking.d_runs_span/2
y = np.sqrt(r ** 2 - (self.field_centers - self.tracking.d_runs_offset - r) ** 2)
self.theta_distances = np.maximum(theta_d_min, y/r*(theta_d_peak - theta_d_offset) + theta_d_offset
+ np.random.normal(0, theta_d_sigma, size=(2, self.num_cells)))
self.field_sigmas = self.field_sigmas_from_theta_d(size_to_theta_d, size_min, size_sigma)
self.define_fields()
if plot:
self.plot_field_params(np.stack((self.field_centers, self.field_centers)), "Field peak position (cm)",
"arc_field_params")
def fields_from_sigmoid(self, steepness, inflection_point, theta_d_offset, theta_d_peak, theta_d_min, theta_d_sigma,
size_to_theta_d, size_min, size_sigma, plot=True):
relative_field_centers = self.field_centers - self.tracking.d_runs_offset
x = np.where(relative_field_centers > self.tracking.d_runs_span/2,
self.tracking.d_runs_span - relative_field_centers, relative_field_centers)
y = 1/(1 + np.exp(-steepness*(x - self.tracking.d_runs_span * inflection_point)))
self.theta_distances = np.maximum(theta_d_min, (y*(theta_d_peak - theta_d_offset) + theta_d_offset)
+ np.random.normal(0, theta_d_sigma, size=(2, self.num_cells)))
self.field_sigmas = self.field_sigmas_from_theta_d(size_to_theta_d, size_min, size_sigma)
self.define_fields()
if plot:
self.plot_field_params(np.stack((self.field_centers, self.field_centers)), "Field peak position (cm)",
"sigmoid_field_params")
def fields_from_parabola(self, theta_d_offset, theta_d_peak, theta_d_min, theta_d_sigma, size_to_theta_d, size_min,
size_sigma, plot=True):
relative_field_centers = self.field_centers - self.tracking.d_runs_offset
a = (theta_d_peak - theta_d_offset) * 4 / (self.tracking.d_runs_span**2)
self.theta_distances = np.maximum(theta_d_min, -a*(relative_field_centers - self.tracking.d_runs_span/2)**2
+ theta_d_peak + np.random.normal(0, theta_d_sigma, size=(2, self.num_cells)))
self.field_sigmas = self.field_sigmas_from_theta_d(size_to_theta_d, size_min, size_sigma)
self.define_fields()
if plot:
self.plot_field_params(np.stack((self.field_centers, self.field_centers)), "Field peak position (cm)",
"parabola_field_params")
def inside_loop(self, time_step, time, run_type, speed):
if self.phase_sigma_0:
theta_phase = np.random.normal(self.theta_phases[time_step],
self.phase_sigma_0 * math.exp(self.exponential_factor * speed),
self.num_cells) % 360
else:
theta_phase = self.theta_phases[time_step]
relative_phase = (theta_phase - self.phase_current) / self.phase_range_extent
represented_positions = (self.positions[time_step]
+ (1 - 2 * run_type) * relative_phase * self.theta_distances[run_type])
valid_positions = (represented_positions >= 0) & (represented_positions < self.track_length)
represented_spatial_bins = np.round(np.ma.masked_array(represented_positions, mask=~valid_positions)
/ self.ds).astype(int)
self.field_activations = np.zeros(self.num_cells)
theta = np.cos(self.theta_phases[time_step] / 180 * np.pi)
self.field_activations[valid_positions] = (self.fields[run_type,
represented_spatial_bins[valid_positions],
valid_positions]
* ((-theta + 1) / 2 * self.theta_modulation +
(1 - self.theta_modulation)))
@classmethod
def default_initialization(cls, super_group_name, group_name, child_name, p, save_figures=False,
figure_format="png", figures_path="", pickle_results=False, pickles_path="", **kwargs):
if "phase_sigma_0" in p:
phase_sigma_0 = p['phase_sigma_0']
exponential_factor = p['exponential_factor']
else:
phase_sigma_0 = 0
exponential_factor = None
model_spikes = cls(super_group_name, group_name, child_name, kwargs['LFP'], kwargs['Tracking'], p["num_cells"],
p["ds"], p["dt"], p["phase_range"], p["phase_current"], p["firing_rate_0"],
p["firing_rate_slope"], p["theta_modulation"], phase_sigma_0, exponential_factor,
save_figures, figure_format, figures_path)
if p["fields_from"] == "characteristic_speed":
model_spikes.fields_from_characteristic_speed(p["theta_d_slope"], p["theta_d_offset"], p["theta_d_min"],
p["theta_d_add_sigma"], p["theta_d_mul_sigma"],
p["size_to_theta_d"], p["size_min"], p["size_add_sigma"])
elif p["fields_from"] == "arc":
model_spikes.fields_from_arc(p['theta_d_offset'], p['theta_d_peak'], p['theta_d_min'], p['theta_d_sigma'],
p["size_to_theta_d"], p["size_min"], p["size_sigma"])
elif p["fields_from"] == "sigmoid":
model_spikes.fields_from_sigmoid(p['steepness'], p['inflection_point'], p['theta_d_offset'],
p['theta_d_peak'], p['theta_d_min'], p['theta_d_sigma'],
p["size_to_theta_d"], p["size_min"], p['size_sigma'])
elif p["fields_from"] == "parabola":
model_spikes.fields_from_parabola(p['theta_d_offset'], p['theta_d_peak'], p['theta_d_min'],
p['theta_d_sigma'], p["size_to_theta_d"], p["size_min"], p["size_sigma"])
else:
sys.exit("Parameter 'fields_from' lacks a valid assignment.")
model_spikes.generate_spikes()
return model_spikes
class SpeedSpikes(ModelSpikes):
"""Represented position depends on characteristic speed at current position (behavior-dependent sweeps).
"""
def __init__(self, super_group_name, group_name, child_name, lfp, tracking, num_cells, ds, dt,
phase_range, phase_current, firing_rate_0, firing_rage_slope, theta_modulation, theta_time,
multiplicative_sigma, additive_sigma, size_to_theta_d, size_min, shift_sigma, field_centers=None,
save_figures=False, figure_format="png", figures_path="figures"):
super().__init__(super_group_name, group_name, child_name, lfp, tracking, num_cells, ds, dt, phase_range,
phase_current, firing_rate_0, firing_rage_slope, theta_modulation, field_centers, save_figures,
figure_format, figures_path)
self.theta_time = theta_time
self.multipliers = np.random.normal(1, multiplicative_sigma, size=(2, self.num_cells))
self.adders = np.random.normal(0, additive_sigma, size=(2, self.num_cells))
# define fields
selected_mean_speeds = \
self.tracking.characteristic_speeds[:, np.round((self.field_centers - self.tracking.d_runs_offset)
/ self.tracking.spatial_bin_size).astype(int)]
approx_theta_distances = np.maximum((theta_time * selected_mean_speeds) * self.multipliers + self.adders, 0)
self.field_sigmas = np.maximum(size_min, approx_theta_distances * size_to_theta_d)
self.define_fields()
self.phase_shifts = np.random.normal(0, shift_sigma, size=num_cells)
def inside_loop(self, time_step, time, run_type, speed):
d_run = self.positions[time_step] - self.tracking.d_runs_offset
characteristic_speed = self.tracking.characteristic_speed_at_position(d_run, run_type)
phases = (self.theta_phases[time_step] + self.phase_shifts) % 360
relative_phases = (phases - self.phase_current) / self.phase_range_extent
theta_distances = np.maximum(self.theta_time * characteristic_speed * self.multipliers[run_type]
+ self.adders[run_type], 0)
represented_positions = self.positions[time_step] + (1 - 2*run_type) * theta_distances * relative_phases
valid_positions = (represented_positions >= 0) & (represented_positions < self.track_length)
represented_spatial_bins = np.round(np.ma.masked_array(represented_positions, mask=~valid_positions)
/ self.ds).astype(int)
self.field_activations = np.zeros(self.num_cells)
theta = np.cos(self.theta_phases[time_step] / 180 * np.pi)
self.field_activations[valid_positions] = (self.fields[run_type,
represented_spatial_bins[valid_positions],
valid_positions]
* ((-theta + 1) / 2 * self.theta_modulation +
(1 - self.theta_modulation)))
@classmethod
def default_initialization(cls, super_group_name, group_name, child_name, p, save_figures=False,
figure_format="png", figures_path="", pickle_results=False, pickles_path="", **kwargs):
model_spikes = cls(super_group_name, group_name, child_name, kwargs['LFP'], kwargs['Tracking'], p["num_cells"],
p["ds"], p["dt"], p["phase_range"], p["phase_current"], p["firing_rate_0"],
p["firing_rate_slope"], p["theta_modulation"], p['theta_time'], p['multiplicative_sigma'],
p['additive_sigma'], p['size_to_theta_d'], p['size_min'], p['shift_sigma'], None,
save_figures, figure_format, figures_path)
model_spikes.generate_spikes()
return model_spikes