-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpath_lengths.py
701 lines (591 loc) · 40 KB
/
path_lengths.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
import sys
import json
import copy
import numpy as np
from numpy.polynomial import polynomial
from scipy import signal
from scipy.stats import linregress, theilslopes
from sklearn.linear_model import RANSACRegressor
import matplotlib.pyplot as plt
from matplotlib import cm
from matplotlib.colors import Normalize
import matplotlib.ticker as ticker
import matplotlib.patheffects as path_effects
from data_analysis.general import Base
from data_analysis.decoder import Decoder
class PathLengths(Base):
"""Calculate theta trajectory (path) lengths.
Args:
super_group_name (string): Name of the high-level group used for pickles and figures. If an instance is defined
as belonging to the super-group, it will be shared across sub-groups.
group_name (string): Name of the low-level sub-group used for pickles and figures.
child_name (string): Name of the instance used for pickles and figures.
decoder (Decoder): Decoder's instance.
spatial_extent (float): Size of the spatial window within which to assess theta trajectories (cm).
fit_color (string): Matplotlib name for the color used for plotting the best fitting lines.
Attributes:
x_flat (np.array): Phases corresponding to every bin in the (position x phase) matrix stacked column-wise.
y_flat (np.array): Positions corresponding to every bin in the (position x phase matrix) stacked column-wise.
y (np.array): Positions corresponding to every bin in the (position x phase) matrix.
"""
dependencies = (Decoder,)
def __init__(self, super_group_name, group_name, child_name, decoder, spatial_extent=90, color_map='viridis',
fit_color='C1', save_figures=False, figure_format="png", figures_path="figures", pickle_results=True,
pickles_path="pickles"):
super().__init__(super_group_name, group_name, child_name, save_figures, figure_format, figures_path,
pickle_results, pickles_path)
self.decoder = decoder
self.num_spatial_bins = int(round(spatial_extent/self.decoder.firing_fields.bin_size)) + 1
self.spatial_extent = (self.num_spatial_bins - 1)*self.decoder.firing_fields.bin_size
self.accepted_bins = None # spatial bins included in place field or phase precession slope analyses
self.color_map = color_map
self.fit_color = fit_color
self.phase_bins_per_cycle = self.decoder.phase_bins_per_cycle
self.phase_extent = (self.decoder.phase_bin_size / 2,
(self.phase_bins_per_cycle - 1) * self.decoder.phase_step_size
+ self.decoder.phase_bin_size / 2)
self.phase_at_bins = np.linspace(self.phase_extent[0], self.phase_extent[1], self.phase_bins_per_cycle)
# radon fit auxiliary variables
self.y = None
self.x_flat = None
self.y_flat = None
# variables for single cycle analyses
self.sc_ok_indices = None
self.sc_central_positions = None
self.sc_speeds = None
self.sc_decoded_positions_flat = None
def calculate_accepted_bins(self, speed_groups, min_occupancy, min_spread):
"""Find out the spatial bins contained in place fields included in place field size or phase precession slopes
due to their occupancy spread.
"""
fields = self.decoder.firing_fields.screened_fields(include_incomplete=1)
occupancy, smooth_occupancy, max_smooth_occupancies = \
self.decoder.firing_fields.occupancy_by_speed(speed_groups)
fields_spread = self.decoder.firing_fields.fields_spread(fields['run_types'], fields['bound_indices'],
occupancy, min_occupancy)
self.accepted_bins = np.full(occupancy.shape, False)
for field_num, (run_type, bound_indices) in enumerate(zip(fields['run_types'], fields['bound_indices'])):
within_field = slice(bound_indices[0], bound_indices[1] + 1)
for speed_group_num in range(len(speed_groups)):
if fields_spread[field_num, speed_group_num] > min_spread:
self.accepted_bins[run_type, speed_group_num, within_field] = True
def accepted_bin(self, run_type, speed_group_num, position):
return self.accepted_bins[run_type, speed_group_num, int(round(position/self.decoder.firing_fields.bin_size))]
def averaged_path_lengths(self, names, speed_groups, margins, restricted_occupancies, min_cycles=5,
path_decoding="fit_max", hanning_width=14, radon_fit_params=None,
speed_groups_to_plot=(), cycles_fig_size=(12, 4)):
if radon_fit_params is None:
radon_fit_params = dict(num_slopes=20, slope_bounds=(-0.45, 0.45), num_intercepts=20,
intercept_bounds=(-60, 60), d=20)
fig, ax = plt.subplots(constrained_layout=True)
for group_num, (name, speed_groups, margin_sizes, restricted_occupancy) in \
enumerate(zip(names, [speed_groups for _ in range(len(margins))], margins, restricted_occupancies)):
decoding_range = (margin_sizes[0] - self.decoder.tracking.d_runs_offset,
np.nanmax(self.decoder.tracking.d) - margin_sizes[1] - self.decoder.tracking.d_runs_offset)
averaged_speeds, path_lengths = self.average_cycles(name, speed_groups, decoding_range,
restricted_occupancy, min_cycles, path_decoding,
hanning_width, radon_fit_params, speed_groups_to_plot,
fig_size=cycles_fig_size)
ax.plot(averaged_speeds, path_lengths, '.-', color=f"C{group_num}", label=f"{name.lower()}")
folder_name = f"averaged_cycles/{name.lower().replace(':', '').replace(' ', '_')}"
self.maybe_pickle_results(averaged_speeds[np.newaxis], "speeds", subfolder=folder_name)
self.maybe_pickle_results(path_lengths[np.newaxis], "path_lengths", subfolder=folder_name)
ax.set_xlim(left=0)
ax.set_ylim(bottom=0)
ax.set_ylabel("Theta path length (cm)")
ax.set_xlabel("Running speeds (cm/s)")
ax.legend(fontsize="small")
self.maybe_save_fig(fig, "theta_path_lengths", subfolder="averaged_cycles")
def extract_cycle_probabilities(self, cycle_num, central_position):
positions = (np.linspace(-self.spatial_extent / 2, self.spatial_extent / 2, self.num_spatial_bins)
+ central_position)
decoded_spatial_bins = np.round(positions / self.decoder.firing_fields.bin_size).astype(int)
valid_spatial_bins = (decoded_spatial_bins >= 0) & (decoded_spatial_bins < self.decoder.num_spatial_bins)
cycle_probabilities = np.full((self.num_spatial_bins, self.phase_bins_per_cycle), np.nan)
cycle_probabilities[valid_spatial_bins] = \
self.decoder.decoded_probabilities[decoded_spatial_bins[valid_spatial_bins],
cycle_num * self.phase_bins_per_cycle:
(cycle_num + 1) * self.phase_bins_per_cycle]
return cycle_probabilities
def plot_cycle_probabilities(self, probabilities, ax, v_max=None, x_tick_spacing=None, y_tick_spacing=None):
c_map = copy.copy(plt.cm.get_cmap(self.color_map))
c_map.set_bad(color='white')
mat = ax.matshow(probabilities, origin="lower", aspect="auto", cmap=c_map, vmin=0, vmax=v_max,
extent=(self.phase_extent[0] - self.decoder.phase_step_size / 2,
self.phase_extent[1] + self.decoder.phase_step_size / 2,
- self.spatial_extent / 2 - self.decoder.firing_fields.bin_size / 2,
+ self.spatial_extent / 2 + self.decoder.firing_fields.bin_size / 2))
ax.axhline(0, color="lightgray", linestyle="dashed")
ax.xaxis.set_ticks_position("bottom")
if x_tick_spacing is not None:
ax.xaxis.set_major_locator(ticker.MultipleLocator(x_tick_spacing))
if y_tick_spacing is not None:
ax.yaxis.set_major_locator(ticker.MultipleLocator(y_tick_spacing))
return mat
def extract_decoded_positions(self, cycle_probabilities, hanning_filter=None):
if hanning_filter is not None:
probabilities = np.empty(cycle_probabilities.shape)
for phase_bin_num in range(self.phase_bins_per_cycle):
probabilities[:, phase_bin_num] = signal.convolve(cycle_probabilities[:, phase_bin_num],
hanning_filter, mode='same')
else:
probabilities = cycle_probabilities
decoded_positions = np.full(cycle_probabilities.shape[1], np.nan)
ok_cols = ~np.isnan(probabilities).all(axis=0)
decoded_positions[ok_cols] = (np.nanargmax(probabilities[:, ok_cols], axis=0)
* self.decoder.firing_fields.bin_size - self.spatial_extent / 2)
return decoded_positions
def average_cycles(self, title, speed_groups, decoding_range, restricted_occupancy, min_cycles,
path_decoding="fit_max", hanning_width=14, radon_fit_params=None, speed_groups_to_plot=(),
fig_size=(7, 1.8), coherent_color_code=True):
averaged_probabilities = np.zeros((2, len(speed_groups), self.num_spatial_bins, self.phase_bins_per_cycle))
averaged_speeds = np.zeros((2, len(speed_groups)))
cycle_counts = np.zeros((2, len(speed_groups)))
for cycle_num, (run_type, central_position, speed) in \
enumerate(zip(self.decoder.run_types, self.decoder.central_positions, self.decoder.speeds)):
if decoding_range[0] < central_position < decoding_range[1]:
cycle_probabilities = np.nan_to_num(self.extract_cycle_probabilities(cycle_num, central_position))
if run_type == 1:
cycle_probabilities = np.flip(cycle_probabilities, axis=0)
for speed_group_num, speed_group in enumerate(speed_groups):
if speed_group[0] <= speed < speed_group[1]:
if (restricted_occupancy and self.accepted_bin(run_type, speed_group_num, central_position)
or not restricted_occupancy):
averaged_speeds[run_type, speed_group_num] += speed
averaged_probabilities[run_type, speed_group_num] += cycle_probabilities
cycle_counts[run_type, speed_group_num] += 1
# combine run types, normalize probabilities & speeds, calculate decoded positions and/or theta path lengths
phases = np.linspace(self.decoder.phase_bin_size / 2,
(self.phase_bins_per_cycle - 1) * self.decoder.phase_step_size
+ self.decoder.phase_bin_size / 2, self.phase_bins_per_cycle)
decoded_positions = np.full((len(speed_groups), self.phase_bins_per_cycle), np.nan)
slopes = np.full(len(speed_groups), np.nan)
intercepts = np.full(len(speed_groups), np.nan)
path_lengths = np.full(len(speed_groups), np.nan)
if path_decoding == "radon_fit" and self.y is None:
self.set_radon_fit_auxiliary_variables()
if path_decoding == "fit_smooth_max":
hanning_width = ((hanning_width / self.decoder.firing_fields.bin_size) // 2) * 2 + 1
hanning_filter = np.hanning(hanning_width)
hanning_filter /= np.sum(hanning_filter)
else:
hanning_filter = None
combined_probabilities = np.zeros((len(speed_groups), self.num_spatial_bins, self.phase_bins_per_cycle))
combined_speeds = np.zeros(len(speed_groups))
for speed_group_num in range(len(speed_groups)):
cycle_count = np.sum(cycle_counts[:, speed_group_num])
if cycle_count >= min_cycles:
# normalize probabilities and speeds
combined_probabilities[speed_group_num] += (averaged_probabilities[0, speed_group_num]
+ averaged_probabilities[1, speed_group_num]) / cycle_count
combined_speeds[speed_group_num] = np.sum(averaged_speeds[:, speed_group_num]) / cycle_count
# fit theta path
if path_decoding in ("fit_weighted_average", "fit_max", "fit_smooth_max"):
if path_decoding == "fit_weighted_average":
positions = np.linspace(-self.spatial_extent / 2, self.spatial_extent / 2,
self.num_spatial_bins)
decoded_positions[speed_group_num] = \
np.dot(positions, combined_probabilities[speed_group_num] /
np.sum(combined_probabilities[speed_group_num], axis=0))
elif path_decoding in ("fit_max", "fit_smooth_max"):
decoded_positions[speed_group_num] = self.extract_decoded_positions(
combined_probabilities[speed_group_num], hanning_filter)
slope, intercept = linregress(phases, decoded_positions[speed_group_num])[:2]
elif path_decoding == "radon_fit":
p = self.radon_fit(combined_probabilities[speed_group_num], **radon_fit_params)
intercept = p[0]
slope = p[1]
else:
sys.exit("Position decoding method not recognized.")
slopes[speed_group_num] = slope
intercepts[speed_group_num] = intercept
path_lengths[speed_group_num] = slope*(self.phase_extent[1] - self.phase_extent[0])
# plot averaged theta cycles
if coherent_color_code:
max_prob = combined_probabilities.max()
else:
max_prob = None
fig, axes = plt.subplots(1, len(speed_groups_to_plot), sharex="col", sharey="col", figsize=fig_size,
constrained_layout=True, squeeze=False)
# fig.suptitle(title)
col_num = 0
for speed_group_num, speed_group in enumerate(speed_groups):
if speed_group in speed_groups_to_plot:
ax = axes[0, col_num]
mat = self.plot_cycle_probabilities(combined_probabilities[speed_group_num], ax, v_max=max_prob,
x_tick_spacing=90, y_tick_spacing=15)
ax.plot(phases, decoded_positions[speed_group_num], '.', color=self.fit_color)
ax.plot(phases, slopes[speed_group_num] * phases + intercepts[speed_group_num], color=self.fit_color)
ax.set_title(f"{speed_group} cm/s", fontsize='medium')
ax.set_xlabel(r"$\theta$ phase"" (°)")
if col_num == 0:
ax.set_ylabel("Position (cm)")
elif coherent_color_code and col_num == len(speed_groups_to_plot) - 1:
bar = fig.colorbar(mat, ax=ax, aspect=60)
bar.ax.set_ylabel("Decoded probability")
# for run_type in range(2):
# self.plot_cycle_probabilities(averaged_probabilities[run_type, speed_group_num],
# axes[1 + run_type, col_num], v_max=None,
# x_tick_spacing=90, y_tick_spacing=15)
col_num += 1
fig_name = f"averaged_cycles_{title.lower().replace(':', '').replace(' ', '_')}"
self.maybe_save_fig(fig, fig_name, subfolder="averaged_cycles")
return combined_speeds, path_lengths
def single_cycles(self, min_peak_prob, min_phase_coverage, min_phase_extent, radon_fit_params,
max_cycles_to_plot, from_run_types, cycles_per_figure, sort_by_speed=True, flip=True,
cycles_fig_size=(11, 6), plot_summary=False, summary_fig_size=(10, 7),
save_decoded_positions=True):
self.sc_ok_indices = [[], []]
self.sc_central_positions = [[], []]
self.sc_speeds = [[], []]
sc_decoded_positions = [[], []]
path_lengths = [[], []]
max_probabilities = [[], []]
poly_fits = [[], []]
if radon_fit_params is None:
radon_fit_params = dict(num_slopes=20, slope_bounds=(-0.45, 0.45), num_intercepts=20,
intercept_bounds=(-60, 60), d=20)
phase_extent = self.phase_extent[1] - self.phase_extent[0]
if min_phase_coverage > phase_extent or min_phase_extent > phase_extent:
sys.exit(f"min_phase_coverage or min_phase_extent can't be smaller than {phase_extent}.")
min_phase_bins = int(round(min_phase_coverage/phase_extent*(self.phase_bins_per_cycle - 1)))
min_phase_extent_bins = int(round(min_phase_extent/phase_extent*(self.phase_bins_per_cycle - 1)))
if self.y is None:
self.set_radon_fit_auxiliary_variables()
for cycle_num, (run_type, central_position, speed) in \
enumerate(zip(self.decoder.run_types, self.decoder.central_positions, self.decoder.speeds)):
probabilities = self.extract_cycle_probabilities(cycle_num, central_position)
# skip invalid theta cycles
if np.isnan(probabilities).all():
continue
phase_bin_ok = np.nanmax(np.nan_to_num(probabilities), axis=0) > min_peak_prob
if np.sum(phase_bin_ok) < min_phase_bins:
continue
if (len(phase_bin_ok) - np.argwhere(phase_bin_ok[::-1])[0, 0] - np.argwhere(phase_bin_ok)[0, 0]
< min_phase_extent_bins):
continue
# fit
p = self.radon_fit(probabilities, **radon_fit_params)
self.sc_ok_indices[run_type].append(cycle_num)
self.sc_central_positions[run_type].append(central_position)
self.sc_speeds[run_type].append(speed)
path_lengths[run_type].append(p[1] * (self.phase_extent[1] - self.phase_extent[0]))
max_probabilities[run_type].append(np.nanmax(probabilities))
poly_fits[run_type].append(p)
if save_decoded_positions:
sc_decoded_positions[run_type].append(self.extract_decoded_positions(probabilities))
if save_decoded_positions:
self.sc_decoded_positions_flat = np.array(
[(1 - 2 * run_type) * z for run_type, x in enumerate(sc_decoded_positions) for y in x for z in y])
self.maybe_pickle_results(self.sc_decoded_positions_flat, "decoded_positions", subfolder="single_cycles")
if max_cycles_to_plot:
self.plot_single_cycles(max_probabilities, poly_fits, max_cycles_to_plot, from_run_types, cycles_per_figure,
sort_by_speed, flip, cycles_fig_size)
speeds = [np.array(array) for array in self.sc_speeds]
central_positions = [np.array(array) for array in self.sc_central_positions]
distances_from_start = [central_positions[0], self.decoder.tracking.d_runs_span - central_positions[1]]
normalized_pos = [distances_from_start[0] / self.decoder.tracking.d_runs_span,
distances_from_start[1] / self.decoder.tracking.d_runs_span]
characteristic_speeds = []
for run_type in range(2):
run_type_characteristic_speeds = []
for sc_central_position in self.sc_central_positions[run_type]:
c_speed = self.decoder.tracking.characteristic_speed_at_position(sc_central_position, run_type)
run_type_characteristic_speeds.append(c_speed)
characteristic_speeds.append(np.array(run_type_characteristic_speeds))
path_lengths = [np.array(array) for array in path_lengths]
self.maybe_pickle_results(speeds, "speeds", subfolder="single_cycles")
self.maybe_pickle_results(distances_from_start, "distances_from_start", subfolder="single_cycles")
self.maybe_pickle_results(normalized_pos, "normalized_pos", subfolder="single_cycles")
self.maybe_pickle_results([path_lengths[0], -path_lengths[1]], "path_lengths", subfolder="single_cycles")
self.maybe_pickle_results(characteristic_speeds, "characteristic_speeds", subfolder="single_cycles")
if plot_summary:
self.single_cycles_summary(path_lengths, fig_size=summary_fig_size)
def plot_single_cycles(self, max_probabilities, poly_fits, max_cycles_to_plot, from_run_types, cycles_per_figure,
sort_by_speed=True, flip=True, fig_size=(11, 6), coherent_color_code=False):
# select random subset of cycles (discarding the few that have negative speeds)
ok_cycle_indices = np.array([y for x in [self.sc_ok_indices[run_type] for run_type in from_run_types] for y in x])
speeds = np.array([y for x in [self.sc_speeds[run_type] for run_type in from_run_types] for y in x])
max_probabilities = np.array([y for x in [max_probabilities[run_type] for run_type in from_run_types] for y in x])
poly_fits = np.array([y for x in [poly_fits[run_type] for run_type in from_run_types] for y in x])
cycles_to_plot = min(max_cycles_to_plot, len(ok_cycle_indices))
selected_indices = np.random.choice(len(ok_cycle_indices), cycles_to_plot, replace=False)
if sort_by_speed:
selected_indices = selected_indices[np.argsort(speeds[selected_indices])]
selected_cycle_indices = ok_cycle_indices[selected_indices]
selected_speeds = speeds[selected_indices]
selected_max_probabilities = max_probabilities[selected_indices]
selected_poly_fits = poly_fits[selected_indices]
# create figures
figs = []
axes = []
total_cycles_per_figure = cycles_per_figure[0] * cycles_per_figure[1]
num_figures = np.ceil(max_cycles_to_plot / total_cycles_per_figure).astype(int)
for _ in range(num_figures):
fig, ax = plt.subplots(cycles_per_figure[0], cycles_per_figure[1], sharey="row", figsize=fig_size)
# ax[-1, 0].set_xlabel(r"$\theta$ Phase (°)")
# ax[-1, 0].set_ylabel("Position (cm)")
figs.append(fig)
axes.append(ax)
# plot cycles
for fig_num, fig in enumerate(figs):
start = total_cycles_per_figure * fig_num
end = min(cycles_to_plot, total_cycles_per_figure * (fig_num + 1))
if coherent_color_code:
fig.subplots_adjust(left=0.15)
ax_pos = axes[fig_num][-2, 0].get_position()
cax_pos = [ax_pos.x0 - 0.08, ax_pos.y0, 0.01, ax_pos.height]
c_ax = fig.add_axes(cax_pos)
max_probability = np.max(selected_max_probabilities[start:end])
norm = Normalize(vmin=0., vmax=max_probability)
fig.colorbar(cm.ScalarMappable(norm=norm, cmap=self.color_map), cax=c_ax, aspect=10)
c_ax.yaxis.set_ticks_position('left')
else:
max_probability = None
for fig_cycle_num, (cycle_index, speed, poly_fit) in \
enumerate(zip(selected_cycle_indices[start:end], selected_speeds[start:end],
selected_poly_fits[start:end])):
central_position = self.decoder.central_positions[cycle_index]
probabilities = self.extract_cycle_probabilities(cycle_index, central_position)
if flip and self.decoder.run_types[cycle_index]:
probabilities = np.flip(probabilities, axis=0)
poly_fit *= -1
row_num = fig_cycle_num // cycles_per_figure[1]
col_num = fig_cycle_num % cycles_per_figure[1]
ax = axes[fig_num][row_num, col_num]
self.plot_cycle_probabilities(probabilities, ax, v_max=max_probability, x_tick_spacing=90,
y_tick_spacing=25)
ax.plot(self.phase_at_bins, polynomial.polyval(self.phase_at_bins, poly_fit), color=self.fit_color)
annotation = ax.annotate(f"{speed:.1f}", (0.95, 0.10), xycoords='axes fraction', color="#D65F5F",
fontsize='small', horizontalalignment='right')
# annotation.set_path_effects([path_effects.Stroke(linewidth=0.5, foreground='black'),
# path_effects.Normal()])
ax.tick_params(axis='x', rotation=90, length=1.5)
ax.tick_params(axis='y', length=1.5)
if row_num != cycles_per_figure[0] - 1:
ax.set_xticklabels([])
# save figures
for figure_num, figure in enumerate(figs):
figure.tight_layout(h_pad=0.5, w_pad=0.5)
self.maybe_save_fig(figure, f"batch_{figure_num}", subfolder="single_cycles")
def single_cycles_summary(self, path_lengths, fig_size=(10, 7)):
"""Plot single cycle path lengths vs instantaneous speed, characteristic speed at the cycles' locations or
position along the track.
"""
fig, ax = plt.subplots(2, 3, sharey="all", sharex="col", constrained_layout=True, figsize=fig_size)
ax[1, 0].set_xlabel("Running speed (cm/s)")
ax[1, 1].set_xlabel("Mean running speed (cm/s)")
ax[1, 2].set_xlabel("Position (cm)")
for run_type, run_type_name in enumerate(self.decoder.tracking.run_type_names):
run_type_lengths = (1 - 2 * run_type) * path_lengths[run_type]
if len(run_type_lengths) > 2:
# slopes vs instantaneous speed
run_type_speeds = np.array(self.sc_speeds[run_type])
ax[run_type, 0].axhline(0, linestyle="dotted", color="C7")
ax[run_type, 0].plot(run_type_speeds, run_type_lengths, '.', color=f"C{run_type}", markersize=1,
label=f"{run_type_name} cycles")
ax[run_type, 0].set_ylabel("Decoded theta trajectory\nlength (cm)")
slope, intercept, r_value, p_value, stderr = linregress(run_type_speeds, run_type_lengths)
lin_speeds = np.array([run_type_speeds.min(), run_type_speeds.max()])
ax[run_type, 0].plot(lin_speeds, lin_speeds*slope + intercept,
label=f"p={p_value:.2e}, r={r_value:.2f}", color='k', linewidth=1)
ax[run_type, 0].legend(loc="lower right", fontsize="x-small")
# slopes vs median speed
ax[run_type, 1].axhline(0, linestyle="dotted", color="C7")
run_type_characteristic_speeds = []
for sc_central_position in self.sc_central_positions[run_type]:
c_speed = self.decoder.tracking.characteristic_speed_at_position(sc_central_position, run_type)
run_type_characteristic_speeds.append(c_speed)
run_type_characteristic_speeds = np.array(run_type_characteristic_speeds)
ax[run_type, 1].plot(run_type_characteristic_speeds, run_type_lengths, '.', color=f"C{run_type}",
markersize=1)
slope, intercept, r_value, p_value, stderr = \
linregress(run_type_characteristic_speeds[~np.isnan(run_type_characteristic_speeds)],
run_type_lengths[~np.isnan(run_type_characteristic_speeds)])
lin_speeds = np.array([np.nanmin(run_type_characteristic_speeds),
np.nanmax(run_type_characteristic_speeds)])
ax[run_type, 1].plot(lin_speeds, lin_speeds*slope + intercept,
label=f"p={p_value:.2e}, r={r_value:.2f}", color='k', linewidth=1)
ax[run_type, 1].legend(loc="lower right", fontsize="x-small")
# slopes vs position
ax[run_type, 2].axhline(0, linestyle="dotted", color="C7")
ax[run_type, 2].plot(self.sc_central_positions[run_type], run_type_lengths, '.', color=f"C{run_type}",
markersize=1)
self.maybe_save_fig(fig, "path_lengths", subfolder="single_cycles")
def radon_fit(self, probabilities, num_slopes, slope_bounds, num_intercepts, intercept_bounds, d):
"""Finds the rectangular area with highest value of the sum probability and then performs a linear weighted fit.
Args:
probabilities (np.array): Matrix of decoded probabilities.
num_slopes (int): Number of slopes to try out.
slope_bounds (tuple(float)): Lower and upper bounds for the slopes (cm/deg).
num_intercepts (int): Number of intercepts to try out per slope.
intercept_bounds (tuple(float)): Lower and upper bounds for the intercepts (cm).
d (float): Orthogonal distance from the fitting line which determines the half width of the window (cm).
"""
best_prob_sum = 0
best_slope = 0
best_intercept = 0
num_probabilities = np.nan_to_num(probabilities)
for slope in np.linspace(slope_bounds[0], slope_bounds[1], num_slopes):
d_y = d*np.sqrt(1 + slope**2)
for intercept in np.linspace(intercept_bounds[0], intercept_bounds[1], num_intercepts):
lower_bound = slope*self.phase_at_bins + intercept - d_y
upper_bound = slope*self.phase_at_bins + intercept + d_y
within_bounds = (self.y >= lower_bound) & (self.y <= upper_bound)
if within_bounds.any():
prob_sum = np.sum(num_probabilities[within_bounds])
if prob_sum > best_prob_sum:
best_prob_sum = prob_sum
best_slope = slope
best_intercept = intercept
d_y = d * np.sqrt(1 + best_slope ** 2)
lower_bound = best_slope * self.phase_at_bins + best_intercept - d_y
upper_bound = best_slope * self.phase_at_bins + best_intercept + d_y
within_bounds = (self.y >= lower_bound) & (self.y <= upper_bound)
roi_probabilities = np.where(within_bounds, num_probabilities, 0)
p = polynomial.polyfit(self.x_flat, self.y_flat, 1, w=roi_probabilities.flatten())
return p
def set_radon_fit_auxiliary_variables(self):
self.y = np.linspace(-self.spatial_extent/2*np.ones(self.phase_bins_per_cycle),
self.spatial_extent/2*np.ones(self.phase_bins_per_cycle), self.num_spatial_bins)
self.x_flat = (np.ones((self.num_spatial_bins, self.phase_bins_per_cycle)) * self.phase_at_bins).flatten()
self.y_flat = self.y.flatten()
def correlate_decoded_and_predicted(self, predicted, plot=False, y_sigma=1.2, fig_name="decoded vs predicted",
subfolder="single_cycles", marker_size=0.5):
if len(self.sc_decoded_positions_flat):
not_nan = ~np.isnan(self.sc_decoded_positions_flat) & ~np.isnan(predicted)
slope, intercept, r, p, e = linregress(predicted[not_nan], self.sc_decoded_positions_flat[not_nan])
# reg = RANSACRegressor().fit(decoded[not_nan][np.newaxis].T, predicted[not_nan])
# ransac_slope = reg.estimator_.coef_[0]
# ransac_r = reg.score(decoded[not_nan][np.newaxis].T, predicted[not_nan])
if plot:
fig, ax = plt.subplots()
ax.plot(predicted[not_nan], self.sc_decoded_positions_flat[not_nan]
+ np.random.normal(scale=y_sigma, size=np.sum(not_nan)), '.',
markersize=marker_size, alpha=0.5)
x = np.array((np.nanmin(predicted), np.nanmax(predicted)))
ax.plot(x, x*slope + intercept, label=f"slope = {slope:.2f}; R = {r:.2f}")
# ax.plot(x, reg.predict(x[np.newaxis].T), label=f'RANSAC slope = {ransac_slope:.2f}: R = {ransac_r:.2f}')
ax.legend()
ax.set_xlabel("Predicted position")
ax.set_ylabel("Decoded position")
self.maybe_save_fig(fig, fig_name, subfolder=subfolder)
return slope, intercept, r
else:
return np.nan, np.nan, np.nan
def displacement_compensation(self, run_type, cycle_index, central_position):
cycle_real_positions = (self.decoder.real_positions[cycle_index * self.phase_bins_per_cycle:
(cycle_index + 1) * self.phase_bins_per_cycle]
- central_position)
if run_type == 1:
cycle_real_positions *= -1
return cycle_real_positions
def decoded_vs_average_speed_predictions(self, theta_time, phase_current=180, plot=False,
displacement_compensation=True):
predicted_positions = np.empty(0)
for run_type in range(2):
for cycle_index, central_position in zip(self.sc_ok_indices[run_type], self.sc_central_positions[run_type]):
speed = self.decoder.tracking.characteristic_speed_at_position(central_position, run_type)
cycle_predicted_positions = (self.phase_at_bins - phase_current) / 360 * theta_time * speed
if displacement_compensation:
cycle_predicted_positions += self.displacement_compensation(run_type, cycle_index, central_position)
predicted_positions = np.append(predicted_positions, cycle_predicted_positions)
fig_name = f"decoded vs predicted - theta_time = {theta_time:.2f}" \
f"{', displacement compensated' if displacement_compensation else ''}"
self.maybe_pickle_results(predicted_positions, f"predicted_positions_{theta_time:.2f}",
subfolder='single_cycles/speed')
slope, intercept, r = self.correlate_decoded_and_predicted(predicted_positions, plot=plot, fig_name=fig_name,
subfolder='single_cycles/speed')
return slope, intercept, r
def RK4_predictor(self, cycle_real_positions, cycle_predicted_positions, central_position, phase_bins, theta_time,
run_type):
previous_phase = 180
previous_position = central_position
for phase in phase_bins:
previous_phase_index = np.nonzero(self.phase_at_bins == previous_phase)
phase_index = np.nonzero(self.phase_at_bins == phase)
real_increment = cycle_real_positions[phase_index] - cycle_real_positions[previous_phase_index]
if np.isnan(real_increment).any():
return
k1 = self.decoder.tracking.characteristic_speed_at_position(previous_position, run_type)
if np.isnan(k1):
return
halfway_position_1 = previous_position + real_increment/2 + (phase - previous_phase) / 720 * theta_time * k1
k2 = self.decoder.tracking.characteristic_speed_at_position(halfway_position_1, run_type)
if np.isnan(k2):
return
halfway_position_2 = previous_position + real_increment/2 + (phase - previous_phase) / 720 * theta_time * k2
k3 = self.decoder.tracking.characteristic_speed_at_position(halfway_position_2, run_type)
if np.isnan(k3):
return
end_position = previous_position + real_increment + (phase - previous_phase) / 360 * theta_time * k3
k4 = self.decoder.tracking.characteristic_speed_at_position(end_position, run_type)
if np.isnan(k4):
return
speed = (k1 + 2*k2 + 2*k3 + k4)/6
new_position = previous_position + real_increment + (phase - previous_phase) / 360 * theta_time * speed
cycle_predicted_positions[self.phase_at_bins == phase] = new_position - central_position
previous_phase = phase
previous_position = new_position
def decoded_vs_average_time_predictions(self, theta_time, plot=False, displacement_compensation=False):
predicted_positions = np.empty(0)
central_phase_bin = int(round((self.phase_bins_per_cycle - 1) / 2))
if self.phase_bins_per_cycle % 2 == 0:
print("This is meant to work with an odd number of phase bins per cycle!")
for run_type in range(2):
for cycle_index, central_position in zip(self.sc_ok_indices[run_type], self.sc_central_positions[run_type]):
cycle_predicted_positions = np.full(self.phase_bins_per_cycle, np.nan)
cycle_predicted_positions[central_phase_bin] = 0
if displacement_compensation:
cycle_real_positions = self.displacement_compensation(run_type, cycle_index, central_position)
else:
cycle_real_positions = np.zeros(self.phase_bins_per_cycle)
self.RK4_predictor(cycle_real_positions, cycle_predicted_positions, central_position,
self.phase_at_bins[central_phase_bin+1:], theta_time, run_type)
self.RK4_predictor(cycle_real_positions, cycle_predicted_positions, central_position,
self.phase_at_bins[:central_phase_bin][::-1], theta_time, run_type)
predicted_positions = np.append(predicted_positions, cycle_predicted_positions)
fig_name = f"decoded vs predicted - theta_time = {theta_time:.2f}" \
f"{', displacement compensated' if displacement_compensation else ''}"
self.maybe_pickle_results(predicted_positions, f"predicted_positions_{theta_time:.2f}",
subfolder='single_cycles/time')
slope, intercept, r = self.correlate_decoded_and_predicted(predicted_positions, plot=plot, fig_name=fig_name,
subfolder=f'single_cycles/time')
return slope, intercept, r
def optimize_theta_times(self, bounds, num_points, model_type, displacement_compensation=True, plot=True,
pickle_best=True):
theta_times = np.linspace(bounds[0], bounds[1], num_points)
slopes = []
rs = []
for theta_time in theta_times:
if model_type == 'time':
slope, intercept, r = \
self.decoded_vs_average_time_predictions(theta_time,
displacement_compensation=displacement_compensation)
elif model_type == 'speed':
slope, intercept, r = \
self.decoded_vs_average_speed_predictions(theta_time,
displacement_compensation=displacement_compensation)
else:
sys.exit("'model_type' should be 'time' or 'speed'")
slopes.append(slope)
rs.append(r)
subfolder = f"single_cycles/{model_type}"
if plot:
fig, ax = plt.subplots()
ax.plot(theta_times, slopes)
ax.set_xlabel("Theta time (s)")
ax.set_ylabel("Slope of decoded position vs predicted position")
fig_name = f"slopes vs theta_time{', displacement compensated' if displacement_compensation else ''}"
self.maybe_save_fig(fig, fig_name, subfolder=subfolder)
best_index = np.argmin(np.abs(np.array(slopes) - 1))
if pickle_best:
self.maybe_pickle_results(theta_times[best_index], "theta_time", subfolder=subfolder)
self.maybe_pickle_results(rs[best_index], "R", subfolder=subfolder)
return theta_times[best_index]
@classmethod
def default_initialization(cls, super_group_name, group_name, child_name, parameters_dict, save_figures=False,
figure_format="png", figures_path="", pickle_results=False, pickles_path="", **kwargs):
return cls(super_group_name, group_name, child_name, kwargs['Decoder'], parameters_dict['spatial_extent'],
save_figures=save_figures, figure_format=figure_format, figures_path=figures_path,
pickle_results=pickle_results, pickles_path=pickles_path)