-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfiring_fields.py
799 lines (687 loc) · 42.6 KB
/
firing_fields.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
import os
import math
import pickle
import numpy as np
from scipy import signal
from scipy.stats import linregress
from scipy.ndimage.filters import gaussian_filter1d
import matplotlib.pyplot as plt
from matplotlib.widgets import Button
from data_analysis.general import Base, nan_smooth
from data_analysis.spikes_basics import Spikes, SpikesBase
from data_analysis.tracking import Tracking
from data_analysis.lfp import LFP
class FiringFields(Base):
"""Calculate firing rate maps.
Args:
super_group_name (string): Name of the high-level group used for pickles and figures. If an instance is defined
as belonging to the super-group, it will be shared across sub-groups.
group_name (string): Name of the low-level sub-group used for pickles and figures.
child_name (string): Name of the instance used for pickles and figures.
spikes (Spikes): Spikes instance.
tracking (Tracking): Tracking instance.
sigma (float): Standard deviation for the Gaussian filter (cm).
save_figures (bool): Whether to save the figures.
"""
dependencies = (LFP, SpikesBase, Tracking)
def __init__(self, super_group_name, group_name, child_name, spikes, tracking, sigma, consecutive_nans_max,
fields_folder='fields', save_figures=False, figure_format="png", figures_path="figures",
pickle_results=True, pickles_path="pickles"):
super().__init__(super_group_name, group_name, child_name, save_figures, figure_format, figures_path,
pickle_results, pickles_path)
self.spikes = spikes
self.tracking = tracking
self.bin_size = tracking.spatial_bin_size
self.num_bins = tracking.num_spatial_bins
self.sigma = sigma
self.consecutive_nans_max = consecutive_nans_max
self.fields_path = f"{fields_folder}/{self.super_group_name}.{self.group_name}.pkl"
self.positions = tracking.d_runs_offset + np.arange(self.num_bins) * self.bin_size
self.electrode_cluster_pairs = spikes.electrode_cluster_pairs
center_start = tracking.corner_size
center_end = tracking.d_runs_span - tracking.corner_size
# calculate time spent per bin
occupancy = np.zeros((2, self.num_bins))
sampling_time = 1/tracking.sampling_rate
for d, run_type, speed, significant_theta in zip(tracking.d_runs, tracking.run_type, tracking.speed_1D,
tracking.significant_theta):
if run_type != -1 and significant_theta:
occupancy[run_type, int(round(d/self.bin_size))] += sampling_time
# calculate spike counts per bin
self.spike_counts = np.zeros((len(self.electrode_cluster_pairs), 2, self.num_bins))
for pair_num, electrode_cluster_pair in enumerate(self.electrode_cluster_pairs):
for spike_time in spikes.spike_times[pair_num]:
d, run_type, speed = tracking.at_time(spike_time, d_runs=True, return_speed=True)
if run_type != -1:
if (((center_start < d < center_end) and speed > tracking.min_central_speed)
or d < center_start or d > center_end):
self.spike_counts[pair_num, run_type, int(round(d/self.bin_size))] += 1
# calculate firing rates
self.rate_maps = np.full((len(self.electrode_cluster_pairs), 2, self.num_bins), np.nan)
self.rate_maps[:, occupancy > 0] = self.spike_counts[:, occupancy > 0] / occupancy[occupancy > 0]
self.smooth_rate_maps = np.empty(self.rate_maps.shape)
for pair_num in range(len(self.electrode_cluster_pairs)):
for run_type in range(2):
self.smooth_rate_maps[pair_num, run_type] = nan_smooth(self.rate_maps[pair_num, run_type],
sigma/self.bin_size)
# for field candidates
self.cand_pair_nums = []
self.cand_run_types = []
self.cand_bounds = []
self.cand_bound_indices = []
self.cand_bounds_ok = []
self.cand_peak_indices = []
self.cand_peak_rates = []
self.cand_spikes_mean_speeds = []
self.cand_characteristic_speeds = []
self.cand_distances_from_start = []
self.cand_distances_to_border = []
@staticmethod
def count_consecutive_false(array):
first_true_index = np.argmax(array)
if first_true_index:
return first_true_index - 1
else:
return len(array) - 1
def too_many_nans(self, not_nans, index):
"""Returns true if there are too many consecutive nans around some index.
"""
if not not_nans[index]:
consecutive_nans = 1
consecutive_nans += self.count_consecutive_false(not_nans[index:])
consecutive_nans += self.count_consecutive_false(not_nans[:index + 1][::-1])
return consecutive_nans > self.consecutive_nans_max
else:
return False
def end_of_field(self, smooth_rate_map, not_nans, peak_index, threshold_rate, increment, within_range,
enforce_unique_peak=False):
index = peak_index + increment
while True:
if not within_range(index) or self.too_many_nans(not_nans, index):
return index - increment, 0
elif enforce_unique_peak and smooth_rate_map[index] > smooth_rate_map[peak_index]:
return -1, -1
elif smooth_rate_map[index] < threshold_rate:
return index, 1
index += increment
def find_field_bounds(self, group_smooth_rates, peak_index, peak_rate, threshold, not_nans,
enforce_unique_peak=False):
threshold_rate = peak_rate * threshold
start, start_ok = self.end_of_field(group_smooth_rates, not_nans, peak_index, threshold_rate, increment=-1,
within_range=lambda x: x >= 0, enforce_unique_peak=enforce_unique_peak)
end, end_ok = self.end_of_field(group_smooth_rates, not_nans, peak_index, threshold_rate, increment=1,
within_range=lambda x: x < self.num_bins,
enforce_unique_peak=enforce_unique_peak)
return [start, end], [start_ok, end_ok]
def peak_distance_from_start(self, field_peak_index, run_type):
if run_type == 0:
return self.positions[field_peak_index] - self.tracking.d_runs_offset
else:
return self.tracking.d_runs_offset + self.tracking.d_runs_span - self.positions[field_peak_index]
def peak_distance_to_border(self, field_peak_index):
peak_position = self.positions[field_peak_index]
return min(peak_position, self.tracking.d_runs_offset + self.tracking.d_runs_span - peak_position)
def find_fields_candidates(self, min_spikes, min_firing_rate, threshold, peak_prominence_threshold):
"""Find the extent of place field candidates based on a minimum peak firing rate and a threshold.
Args:
min_spikes (int): Minimum number of spikes fields need to have.
min_firing_rate (float): Minimum peak firing rate to classify as place field (Hz).
threshold (float): Proportion of the peak firing rate down to which the place field is defined.
peak_prominence_threshold (float): Proportion of the peak firing rate that sets the minimum
prominence of the peak.
"""
for pair_num in range(len(self.electrode_cluster_pairs)):
for run_type in range(2):
peak_indices = signal.find_peaks(self.smooth_rate_maps[pair_num, run_type], height=min_firing_rate)[0]
not_nans = ~np.isnan(self.rate_maps[pair_num][run_type])
for peak_index in peak_indices:
peak_rate = self.smooth_rate_maps[pair_num, run_type, peak_index]
bound_indices, bounds_ok = self.find_field_bounds(self.smooth_rate_maps[pair_num, run_type],
peak_index, peak_rate, threshold, not_nans,
enforce_unique_peak=True)
if -1 not in bounds_ok and sum(bounds_ok) > 0:
prominence_threshold = peak_rate * (1 - peak_prominence_threshold)
prominence_ok = ((self.smooth_rate_maps[pair_num, run_type, bound_indices[0]:peak_index+1]
<= prominence_threshold).any() and
(self.smooth_rate_maps[pair_num, run_type, peak_index:bound_indices[1]+1]
< prominence_threshold).any())
if not prominence_ok:
continue
if np.sum(self.spike_counts[pair_num, run_type,
bound_indices[0]:bound_indices[1]+1]) < min_spikes:
continue
# start_position = self.positions[bound_indices[0]] if bounds_ok[0] > 0 else np.nan
# end_position = self.positions[bound_indices[1]] if bounds_ok[1] > 0 else np.nan
self.cand_pair_nums.append(pair_num)
self.cand_run_types.append(run_type)
self.cand_bounds_ok.append(bounds_ok)
self.cand_bound_indices.append(bound_indices)
self.cand_bounds.append((self.positions[bound_indices[0]], self.positions[bound_indices[1]]))
self.cand_peak_indices.append(peak_index)
self.cand_peak_rates.append(peak_rate)
field_speeds = []
lower_bound = self.positions[bound_indices[0]]
upper_bound = self.positions[bound_indices[1]]
for spike_time in self.spikes.spike_times[pair_num]:
d, spike_run_type, speed = self.tracking.at_time(spike_time, d_runs=True, return_speed=True)
if spike_run_type == run_type and (lower_bound < d < upper_bound):
field_speeds.append(speed)
self.cand_spikes_mean_speeds.append(np.mean(field_speeds))
self.cand_characteristic_speeds.append(
np.nanmean(self.tracking.characteristic_speeds[run_type][bound_indices[0]:bound_indices[1]+1]))
self.cand_distances_from_start.append(self.peak_distance_from_start(peak_index, run_type))
self.cand_distances_to_border.append(self.peak_distance_to_border(peak_index))
def save_ok_fields(self, field_nums, fields_folder_path="fields"):
fields = {'pair_nums': [], 'run_types': [], 'bounds_ok': [], 'bound_indices': [], 'bounds': [],
'peak_indices': [], 'peak_rates': [], 'spikes_mean_speeds': [], 'characteristic_speeds': [],
'distances_from_start': [], 'distances_to_border': [], 'complete': []}
for field_num in field_nums:
if np.sum(self.cand_bounds_ok[field_num]) == 2:
complete = True
else:
complete = False
fields['pair_nums'].append(self.cand_pair_nums[field_num])
fields['run_types'].append(self.cand_run_types[field_num])
fields['bounds_ok'].append(self.cand_bounds_ok[field_num])
fields['bound_indices'].append(self.cand_bound_indices[field_num])
fields['bounds'].append(self.cand_bounds[field_num])
fields['peak_indices'].append(self.cand_peak_indices[field_num])
fields['peak_rates'].append(self.cand_peak_rates[field_num])
fields['spikes_mean_speeds'].append(self.cand_spikes_mean_speeds[field_num])
fields['characteristic_speeds'].append(self.cand_characteristic_speeds[field_num])
fields['distances_from_start'].append(self.cand_distances_from_start[field_num])
fields['distances_to_border'].append(self.cand_distances_to_border[field_num])
fields['complete'].append(complete)
if not os.path.isdir(fields_folder_path):
os.mkdir(fields_folder_path)
with open(self.fields_path, 'wb') as fields_file:
pickle.dump(fields, fields_file)
def accept_all(self):
self.save_ok_fields(range(len(self.cand_pair_nums)))
def screen_fields(self, lfp, rewrite=False):
"""For all putative place fields, show firing rate and phase vs. position plots for manually accepting or
discarding them.
Args:
lfp (LFP):
rewrite (bool):
"""
if not os.path.exists(self.fields_path) or rewrite:
field_num = 0
pair_num = 0
run_type = 0
field_bounds = ()
bounds_ok = ()
field_nums = []
fig, ax = plt.subplots(2, sharex="col")
plt.subplots_adjust(bottom=0.25)
def get_fields():
nonlocal field_num, pair_num, run_type, field_bounds, bounds_ok
for field_num, (pair_num, run_type, field_bounds, bounds_ok) in \
enumerate(zip(self.cand_pair_nums, self.cand_run_types, self.cand_bounds, self.cand_bounds_ok)):
yield
def plot_next():
nonlocal field_num, pair_num, run_type
try:
next(candidate_generator)
ax[0].clear()
ax[0].set_title(f"{field_num}, {'→' if run_type == 0 else '←'}")
ax[0].plot(self.positions, self.smooth_rate_maps[pair_num, run_type])
if bounds_ok[0]:
ax[0].axvline(field_bounds[0], color='C1', linestyle="dotted")
if bounds_ok[1]:
ax[0].axvline(field_bounds[1], color='C1', linestyle="dotted")
ax[0].set_ylabel("Firing rate (Hz)")
in_field_positions = []
in_field_phases = []
in_field_speeds = []
out_of_field_positions = []
out_of_field_phases = []
electrode_index = self.spikes.electrodes.index(self.electrode_cluster_pairs[pair_num][0])
for spike_time in self.spikes.spike_times[pair_num]:
position, spike_run_type, speed = self.tracking.at_time(spike_time, return_speed=True)
if spike_run_type == run_type:
phase, = lfp.at_time(spike_time, electrode_index, return_phase=True)
out_of_field = ((~np.isnan(field_bounds[0]) and position < field_bounds[0])
or (~np.isnan(field_bounds[1]) and position > field_bounds[1]))
if out_of_field:
out_of_field_positions.append(position)
out_of_field_phases.append(phase)
else:
in_field_positions.append(position)
in_field_phases.append(phase)
in_field_speeds.append(speed)
ax[1].clear()
ax[1].scatter(in_field_positions, in_field_phases, c=in_field_speeds,
s=plt.rcParams['lines.markersize'], vmin=0, vmax=np.nanmax(self.tracking.speed_1D))
ax[1].plot(out_of_field_positions, out_of_field_phases, '.', color='C7')
ax[1].set_xlabel("Position (cm)")
ax[1].set_ylabel("Phase (deg)")
fig.align_ylabels(ax)
return False
except StopIteration:
return True
def ok(_):
field_nums.append(field_num)
go_on()
def go_on(event=None):
finished = plot_next()
if finished:
self.save_ok_fields(field_nums)
plt.close(fig)
candidate_generator = get_fields()
plot_next()
ax_ok = plt.axes([0.65, 0.05, 0.1, 0.075])
ax_discard = plt.axes([0.80, 0.05, 0.1, 0.075])
button_ok = Button(ax_ok, 'OK')
button_ok.on_clicked(ok)
button_discard = Button(ax_discard, 'Discard')
button_discard.on_clicked(go_on)
plt.show()
def plot_traces(self, field_nums):
"""Plot firing rate maps as traces.
Args:
field_nums: Field numbers to plot.
"""
run_types = ['Forward run', 'Backward run']
fig, ax = plt.subplots(2, 1, sharex='col')
for field_num in field_nums:
pair_num = self.cand_pair_nums[field_num]
run_type = self.cand_run_types[field_num]
ax[run_type].plot(self.positions, self.rate_maps[pair_num, run_type], label=field_num)
ax[run_type].plot(self.positions, self.smooth_rate_maps[pair_num, run_type],
label=f"{field_num}, smooth")
ax[run_type].set_title(run_types[run_type])
ax[run_type].legend(loc='lower left')
ax[run_type].set_ylabel('Firing rate (Hz)')
ax[1].set_xlabel('Displacement (cm)')
self.maybe_save_fig(fig, "firing_rate")
def plot_heatmap(self, smoothed=True, fig_size=(9, 4.5), verbose=False):
"""Plot all firing rate maps as a heatmap, with cells sorted by the location of their peak firing rate.
Args:
smoothed (bool): Plot smoothed or raw firing rates.
fig_size (tuple(float)): Figure size.
verbose (bool): Print sorted cell ids.
"""
run_types = ['Forward run', 'Backward run']
rate_maps = self.smooth_rate_maps if smoothed else self.rate_maps
fig, ax = plt.subplots(1, 2, constrained_layout=True, figsize=fig_size)
extent = (self.positions[0] - self.bin_size / 2, self.positions[-1] + self.bin_size / 2,
len(self.electrode_cluster_pairs) - 0.5, -0.5)
for run_type, run_type_name in enumerate(run_types):
# sort cells by location of peak firing
indices = range(len(self.electrode_cluster_pairs))
sorted_indices = sorted(indices, key=lambda i: np.nanargmax(rate_maps[i, run_type]))
sorted_pairs = np.array(self.electrode_cluster_pairs)[sorted_indices]
if verbose:
print(f'\nSorted (electrode, cluster_id) pairs in {run_type_name.lower()}:')
for cell_num, sorted_pair in enumerate(sorted_pairs):
print(f'cell: {cell_num}, electrode: {sorted_pair[0]}, cluster_id: {sorted_pair[1]}')
mat = ax[run_type].matshow(rate_maps[sorted_indices, run_type, :], extent=extent, aspect="auto", vmin=0,
vmax=np.nanmax(rate_maps))
ax[run_type].xaxis.set_ticks_position('bottom')
ax[run_type].set_title(run_type_name)
ax[run_type].set_xlabel('Displacement (cm)')
ax[run_type].set_ylabel('Sorted cell number')
if run_type == 1:
bar = fig.colorbar(mat, ax=ax[run_type], aspect=40)
bar.ax.set_ylabel("Firing rate (Hz)")
self.maybe_save_fig(fig, f"heatmaps")
def field_size(self, bound_indices, bounds_ok, peak_index):
if sum(bounds_ok) == 2:
return self.positions[bound_indices[1]] - self.positions[bound_indices[0]]
else:
field_bound_index = bound_indices[0] if bounds_ok[0] else bound_indices[1]
return 2 * abs(field_bound_index - peak_index) * self.bin_size
def occupancy_by_speed(self, speed_groups):
# calculate time spent per bin
occupancy = np.zeros((2, len(speed_groups), self.num_bins))
sampling_time = 1 / self.tracking.sampling_rate
for d, run_type, speed, significant_theta in zip(self.tracking.d_runs, self.tracking.run_type,
self.tracking.speed_1D, self.tracking.significant_theta):
if run_type != -1 and significant_theta:
if run_type == 1:
speed *= -1
for speed_group_num, speed_group in enumerate(speed_groups):
if speed_group[0] < speed < speed_group[1]:
occupancy[run_type, speed_group_num, int(round(d / self.bin_size))] += sampling_time
smooth_occupancy = gaussian_filter1d(occupancy, self.sigma / self.bin_size, mode='nearest')
return occupancy, smooth_occupancy, np.max(smooth_occupancy, axis=(1, 2))
@staticmethod
def max_summed_distances(pattern_size):
"""Sum of pairwise distances between pattern elements."""
sum_distance = 0
for n in range(2, pattern_size + 1):
sum_distance += (n - 1) * n / 2
return sum_distance + 1
@staticmethod
def spread(pattern, max_sum_distance):
total_spread = 0
for i in range(len(pattern)):
if pattern[i]:
for j in range(i + 1, len(pattern)):
if pattern[j]:
total_spread += j - i
return total_spread / max_sum_distance
def fields_spread(self, run_types, bound_indices, occupancy, min_occupancy):
spreads = []
for run_type, field_bound_indices in zip(run_types, bound_indices):
field_bound_indices[1] += 1
max_summed_distances = self.max_summed_distances(field_bound_indices[1] - field_bound_indices[0])
field_spreads = []
for speed_group_occupancy in occupancy[run_type]:
ok_field_occupancy = speed_group_occupancy[slice(*field_bound_indices)] > min_occupancy
field_spread = self.spread(ok_field_occupancy, max_summed_distances)
field_spreads.append(field_spread)
spreads.append(field_spreads)
return np.array(spreads)
def screened_fields(self, include_incomplete=False):
with open(self.fields_path, 'rb') as fields_file:
all_fields = pickle.load(fields_file)
fields = {}
for key in all_fields:
fields[key] = [all_fields[key][i] for i, complete in enumerate(all_fields['complete'])
if include_incomplete or complete]
fields['idx'] = [i for i, complete in enumerate(all_fields['complete']) if include_incomplete or complete]
return fields
def ok_speed_bins_histogram(self, speed_groups, min_occupancy, min_spread, hist_bin_size, num_hist_bins,
verbose=False):
central_speeds = np.mean(speed_groups, axis=1)
# calculate for which speed bins the spread of occupancy is enough for each field
fields = self.screened_fields()
occupancy, smooth_occupancy, max_smooth_occupancies = self.occupancy_by_speed(speed_groups)
fields_spread_ok = self.fields_spread(fields['run_types'], fields['bound_indices'], occupancy,
min_occupancy) > min_spread
# calculate distance of ok speed bins to characteristic speed
overall_field_num = 0
ok_by_speed_distance = [[] for _ in range(num_hist_bins)]
for c_speed in fields['characteristic_speeds']:
if speed_groups[0][0] < c_speed < speed_groups[-1][-1]:
for speed_bin_num, field_spread_ok in enumerate(fields_spread_ok[overall_field_num]):
speed_distance = abs(c_speed - central_speeds[speed_bin_num])
hist_bin_num = int(speed_distance / hist_bin_size)
if hist_bin_num < num_hist_bins:
ok_by_speed_distance[hist_bin_num].append(field_spread_ok)
overall_field_num += 1
if verbose:
for distance_num, oks in enumerate(ok_by_speed_distance):
print(f"{np.mean(oks):.2f} ok with {len(oks)} points for a distance "
f"of {(distance_num + 0.5) * hist_bin_size}")
self.maybe_pickle_results(ok_by_speed_distance, "ok_by_speed_distance")
def within_field_increases(self, speed_groups, fields, values, name, subfolder):
speed_group_means = np.mean(speed_groups, axis=1)
max_deviation = len(speed_groups) - 1
all_increases = []
for characteristic_speed, field_values in zip(fields['characteristic_speeds'], values):
best_group_index = np.argmin(np.abs(speed_group_means - characteristic_speed))
baseline = field_values[best_group_index]
if ~np.isnan(baseline):
field_increases = []
for speed_group_index in range(best_group_index - max_deviation, best_group_index + max_deviation + 1):
if speed_group_index < 0 or speed_group_index > max_deviation:
field_increases.append(np.nan)
else:
field_increases.append(field_values[speed_group_index] - baseline)
all_increases.append(field_increases)
self.maybe_pickle_results(all_increases, name, subfolder=subfolder)
def field_sizes_by_speed(self, speed_groups, min_peak_firing_rate, threshold, peak_prominence_threshold,
min_occupancy=0, min_spread=0, plot_fields=False, fields_per_plot=6, fig_size=(10, 6),
constrained_layout=False, field_nums=None, pad=6, within_field=True):
"""Calculate place field sizes pooling spikes from different running speeds.
Args:
speed_groups (list(list(float))): List of (lower, upper) bounds for speed groups.
min_peak_firing_rate (float): Minimum peak firing rate to classify as place field (Hz).
threshold (float): Proportion of the peak firing rate down to which the place field is defined.
peak_prominence_threshold (float): Proportion of the peak that defines the minimum peak prominence required
for considering a field for half-size calculation.
min_occupancy (float): Minimum time spent per bin (s).
min_spread (float): Minimum value for the spread of valid occupancy bins [0-1].
plot_fields (bool): Whether to plot the fields.
fields_per_plot (int): Number of place fields per figure.
fig_size (tuple(float)): Size of the figure in inches.
constrained_layout (bool): For matplotlib. Very slow but otherwise figures are screwed.
field_nums (list(int)): Fields to analyze.
pad (int): Number of spatial bins around the place field to plot.
within_field (bool): Whether to also calculate within-field increases with respect to the field's
characteristic running speed.
"""
fields = self.screened_fields(include_incomplete=True)
if field_nums is not None:
for key, values in fields.items():
fields[key] = [fields[key][i] for i in field_nums]
# fields[key] = [value for i, value in enumerate(values) if i in field_nums]
occupancy, smooth_occupancy, max_smooth_occupancies = self.occupancy_by_speed(speed_groups)
fields_spread = self.fields_spread(fields['run_types'], fields['bound_indices'], occupancy, min_occupancy)
# calculate rate maps
rate_maps = np.full((len(fields['pair_nums']), len(speed_groups), self.num_bins), np.nan)
ok_rate_maps = np.full((len(fields['pair_nums']), len(speed_groups), self.num_bins), np.nan)
previous_pair_num = None
previous_run_type = None
for field_num, (pair_num, target_run_type) in enumerate(zip(fields['pair_nums'], fields['run_types'])):
if pair_num == previous_pair_num and target_run_type == previous_run_type:
rate_maps[field_num] = rate_maps[field_num - 1]
ok_rate_maps[field_num] = ok_rate_maps[field_num - 1]
else:
spike_counts = np.zeros((len(speed_groups), self.num_bins))
for spike_time in self.spikes.spike_times[pair_num]:
d, run_type, speed = self.tracking.at_time(spike_time, d_runs=True, return_speed=True)
if run_type == target_run_type:
for speed_group_num, speed_group in enumerate(speed_groups):
if speed_group[0] < speed < speed_group[1]:
spike_counts[speed_group_num, int(round(d / self.bin_size))] += 1
occupancy_positive = occupancy[target_run_type] > 0
rate_maps[field_num, occupancy_positive] = (spike_counts[occupancy_positive]
/ occupancy[target_run_type][occupancy_positive])
occupancy_ok = occupancy[target_run_type] > min_occupancy
ok_rate_maps[field_num, occupancy_ok] = (spike_counts[occupancy_ok]
/ occupancy[target_run_type][occupancy_ok])
previous_pair_num = pair_num
previous_run_type = target_run_type
# prepare figures
if plot_fields:
axes = []
figs = []
for plot_num in range(math.ceil(len(fields['pair_nums']) / fields_per_plot)):
fig, ax = plt.subplots(len(speed_groups)+1, fields_per_plot, figsize=fig_size,
constrained_layout=constrained_layout)
# ax[-2, 0].set_xlabel("Position (cm)")
# ax[-2, 0].set_ylabel("Firing\nrate (Hz)")
# ax[-1, 0].set_xlabel("Running\nspeed (cm/s)")
# ax[-1, 0].set_ylabel("Place field\nsize (cm)")
axes.append(ax)
figs.append(fig)
# calculate place field sizes
all_field_sizes = np.full((len(fields['pair_nums']), len(speed_groups)), np.nan)
all_field_peak_rates = np.full((len(fields['pair_nums']), len(speed_groups)), np.nan)
average_speeds = np.mean(speed_groups, axis=1)
for field_num, (run_type, bound_indices) in \
enumerate(zip(fields['run_types'], fields['bound_indices'])):
lower_bound_index, upper_bound_index = bound_indices
within_field = slice(lower_bound_index, upper_bound_index+1)
around_field = slice(max(0, lower_bound_index-pad), upper_bound_index+1+pad)
for speed_group_num, speed_group in enumerate(speed_groups):
if plot_fields:
ax = axes[int(field_num / fields_per_plot)][speed_group_num, field_num % fields_per_plot]
ax.spines['top'].set_visible(False)
axr = ax.twinx()
axr.spines['top'].set_visible(False)
axr.plot(self.positions[around_field], smooth_occupancy[run_type, speed_group_num][around_field],
color='C7', linewidth=0.6)
axr.set_ylim(top=max(max_smooth_occupancies) * 1.1)
ax.spines['right'].set_edgecolor('C7')
axr.tick_params(axis='y', colors='C7')
if not field_num % fields_per_plot == fields_per_plot - 1:
axr.set_yticklabels([])
ax.set_zorder(1)
ax.patch.set_visible(False)
ax.plot(self.positions[around_field], rate_maps[field_num, speed_group_num][around_field], '.',
color='C0', markersize=3)
max_rate = 1.1*np.nanmax(rate_maps[field_num])
ax.set_ylim([-0.05*max_rate, max_rate])
# # for distinguishing valid and invalid points, plot above in red and uncomment here
# ax.plot(self.positions, ok_rate_maps[field_num, speed_group_num], '.', color='C0', markersize=4)
for i in range(2):
if fields['bounds_ok'][field_num][i]:
ax.axvline(fields['bounds'][field_num][i], color='C7', linestyle='dashed')
# ax.annotate(f"{fields_spread[field_num, speed_group_num]:.2f}", (0.75, 0.8),
# xycoords="axes fraction", fontsize="x-small")
align_yaxis(ax, 0, axr, 0)
if speed_group_num == 0:
ax.set_title(f"field {field_num + 1}", fontsize='medium')
if field_num % fields_per_plot == 0:
ax.annotate(f"{speed_group}\ncm/s", (-0.85, 0.5), xycoords="axes fraction",
rotation="vertical", va='center', multialignment="center")
if speed_group_num < len(speed_groups) - 1:
ax.set_xticklabels([])
# elif field_num % fields_per_plot == fields_per_plot - 1:
# axr.set_ylabel("Occupancy\n(s)", color='C7')
if np.sum(~np.isnan(rate_maps[field_num, speed_group_num][within_field])) > 2:
group_smooth_rates = nan_smooth(rate_maps[field_num, speed_group_num], self.sigma / self.bin_size)
if plot_fields:
ax.plot(self.positions[around_field], group_smooth_rates[around_field])
if fields_spread[field_num, speed_group_num] > min_spread:
field_rates = group_smooth_rates[within_field]
peak_indices, peak_properties = signal.find_peaks(field_rates,
# height=global_threshold_rate,
height=min_peak_firing_rate,
prominence=(np.nanmax(field_rates)
* peak_prominence_threshold))
if len(peak_indices):
peak_index = peak_indices[np.argmax(peak_properties['peak_heights'])] + within_field.start
if (np.isnan(group_smooth_rates[peak_index:]).all()
or np.isnan(group_smooth_rates[:peak_index]).all()):
continue
peak_rate = group_smooth_rates[peak_index]
all_field_peak_rates[field_num, speed_group_num] = peak_rate
not_nans = ~np.isnan(ok_rate_maps[field_num, speed_group_num])
bounds, bounds_ok = self.find_field_bounds(group_smooth_rates, peak_index, peak_rate,
threshold, not_nans, enforce_unique_peak=True)
if -1 not in bounds_ok and sum(bounds_ok) > 0:
all_field_sizes[field_num, speed_group_num] = self.field_size(bounds, bounds_ok,
peak_index)
if plot_fields:
ax.plot(self.positions[peak_index], peak_rate, '*')
for bound_num in range(2):
if bounds_ok[bound_num]:
ax.axvline(self.positions[bounds[bound_num]], color='k')
if plot_fields:
ax = axes[int(field_num / fields_per_plot)][-1, field_num % fields_per_plot]
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
field_sizes = all_field_sizes[field_num]
ax.plot(average_speeds, field_sizes, '.', color='k')
sizes_ok = ~np.isnan(field_sizes)
if np.sum(sizes_ok) > 1:
fit = linregress(average_speeds[sizes_ok], field_sizes[sizes_ok])
ax.plot(average_speeds[sizes_ok], average_speeds[sizes_ok] * fit.slope + fit.intercept, 'C7')
size_range = np.nanmax(field_sizes) - np.nanmin(field_sizes)
if size_range > 0:
ax.set_ylim([np.nanmin(field_sizes) - 0.05*size_range,
np.nanmax(field_sizes) + 0.05*size_range])
self.maybe_pickle_results(all_field_sizes, "field_sizes", subfolder="per_speed")
self.maybe_pickle_results(all_field_peak_rates, "field_peak_rates", subfolder="per_speed")
if plot_fields:
for fig_num, fig in enumerate(figs):
fig.tight_layout(h_pad=0.1, w_pad=0.4)
self.maybe_save_fig(fig, f"batch_{fig_num}")
fig, ax = plt.subplots()
for field_sizes in all_field_sizes:
ax.plot(average_speeds, field_sizes, '*-')
ax.set_ylabel("Field size (cm)")
ax.set_xlabel("Running speed (cm/s)")
plt.tight_layout()
self.maybe_save_fig(fig, "field_sizes")
if within_field:
self.within_field_increases(speed_groups, fields, all_field_sizes, "size_increases", "per_speed")
def field_sizes_vs_stuff(self, max_marker_size=30, fig_size=(12, 3), plot=False):
sizes = []
spikes_mean_speeds = []
characteristic_speeds = []
peak_distances_from_start = []
peak_normalized_pos = []
peak_distances_to_border = []
peak_rates = []
indices = []
fields = self.screened_fields(include_incomplete=True)
for field_num in range(len(fields['pair_nums'])):
field_bounds_indices = fields['bound_indices'][field_num]
field_peak_index = fields['peak_indices'][field_num]
sizes.append(self.field_size(field_bounds_indices, fields['bounds_ok'][field_num], field_peak_index))
spikes_mean_speeds.append(fields['spikes_mean_speeds'][field_num])
characteristic_speeds.append(fields['characteristic_speeds'][field_num])
peak_distances_from_start.append(fields['distances_from_start'][field_num])
peak_normalized_pos.append(peak_distances_from_start[-1] / self.tracking.d_runs_span)
peak_distances_to_border.append(fields['distances_to_border'][field_num])
peak_rates.append(fields['peak_rates'][field_num])
indices.append(fields['idx'][field_num])
self.maybe_pickle_results([sizes], "sizes")
self.maybe_pickle_results([spikes_mean_speeds], "spikes_mean_speeds")
self.maybe_pickle_results([characteristic_speeds], "characteristic_speeds")
self.maybe_pickle_results([peak_distances_from_start], "peak_distances_from_start")
self.maybe_pickle_results([peak_normalized_pos], "peak_normalized_pos")
self.maybe_pickle_results([peak_distances_to_border], "peak_distances_to_border")
self.maybe_pickle_results([peak_rates], "peak_rates")
self.maybe_pickle_results([indices], "indices")
if plot:
fig, ax = plt.subplots(1, 4, sharey='row', figsize=fig_size)
weights = np.array(peak_rates)/max(peak_rates)*max_marker_size
ax[0].scatter(peak_distances_from_start, sizes, s=weights)
ax[0].set_xlabel("Distance from\nthe start of the run (cm)")
ax[0].set_ylabel("Field size (cm)")
ax[1].scatter(peak_distances_to_border, sizes, s=weights)
ax[1].set_xlabel("Distance to\nthe nearest border (cm)")
ax[2].scatter(spikes_mean_speeds, sizes, s=weights)
ax[2].set_xlabel("Mean speed\nfor field's spikes (cm/s)")
ax[3].scatter(characteristic_speeds, sizes, s=weights)
ax[3].set_xlabel("Characteristic speed\nthrough the field (cm/s)")
plt.tight_layout()
self.maybe_save_fig(fig, "field_sizes_vs_stuff")
@staticmethod
def field_skewness(firing_rates):
x = np.arange(1, len(firing_rates) + 1)
center_of_mass = np.sum(x*firing_rates) / np.sum(firing_rates)
m3 = np.sum(firing_rates * (x - center_of_mass)**3) / np.sum(firing_rates)
std = np.sqrt(np.sum(firing_rates * (x - center_of_mass)**2) / np.sum(firing_rates))
return m3 / std**3
def field_skewness_vs_acceleration(self):
fields = self.screened_fields(include_incomplete=False)
accelerations = []
skewnesses = []
for pair_num, run_type, bound_indices in zip(fields['pair_nums'], fields['run_types'], fields['bound_indices']):
lower_bound, upper_bound = bound_indices
accelerations.append(np.mean(self.tracking.mean_acceleration[run_type][lower_bound:upper_bound + 1]))
field_rates = self.smooth_rate_maps[pair_num][run_type][lower_bound:upper_bound + 1]
skewnesses.append((1 - 2*run_type) * self.field_skewness(field_rates))
fig, ax = plt.subplots()
ax.plot(accelerations, skewnesses, '.')
ax.axvline(0, linestyle='dashed', color='C7')
ax.axhline(0, linestyle='dashed', color='C7')
ax.set_xlabel(r"Mean acceleration $(cm/s^2)$")
ax.set_ylabel("Skewness")
self.maybe_save_fig(fig, "skewness_vs_acceleration")
self.maybe_pickle_results([accelerations], "accelerations")
self.maybe_pickle_results([skewnesses], "skewnesses")
@classmethod
def default_initialization(cls, super_group_name, group_name, child_name, parameters_dict, save_figures=False,
figure_format="png", figures_path="", pickle_results=False, pickles_path="", **kwargs):
firing_fields = cls(super_group_name, group_name, child_name, kwargs['SpikesBase'].spikes,
kwargs['Tracking'], parameters_dict['firing_rate_sigma'],
parameters_dict['consecutive_nans_max'], save_figures=save_figures,
figure_format=figure_format, figures_path=figures_path, pickle_results=pickle_results,
pickles_path=pickles_path)
if not os.path.exists(firing_fields.fields_path):
firing_fields.find_fields_candidates(parameters_dict['min_spikes'], parameters_dict['min_peak_firing_rate'],
parameters_dict['firing_rate_threshold'],
parameters_dict['peak_prominence_threshold'])
if group_name == "EXPERIMENTAL":
firing_fields.screen_fields(kwargs['LFP'])
else:
firing_fields.accept_all()
return firing_fields
def align_yaxis(ax1, v1, ax2, v2):
"""adjust ax2 ylimit so that v2 in ax2 is aligned to v1 in ax1"""
_, y1 = ax1.transData.transform((0, v1))
_, y2 = ax2.transData.transform((0, v2))
inv = ax2.transData.inverted()
_, dy = inv.transform((0, 0)) - inv.transform((0, y1 - y2))
miny, maxy = ax2.get_ylim()
ax2.set_ylim(miny + dy, maxy + dy)