-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbatch.py
1544 lines (1257 loc) · 74.8 KB
/
batch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import os
import glob
import pickle
import numpy as np
import math
from scipy.interpolate import interp1d
from scipy.stats import linregress, wilcoxon, kendalltau
import warnings
import matplotlib.pyplot as plt
import matplotlib.colors as colors_lib
from matplotlib.ticker import FormatStrFormatter, MaxNLocator
from data_analysis.analyze.config import speed_groups, general_parameters, pickles_path
from data_analysis.analyze.batch_config import sessions, rats, figures_path, group_names
from data_analysis.initializer import initialize
from data_analysis.tracking import Tracking
from misc.likelihood_ratio_test import hierarchical_lrt
# colors = plt.rcParams['axes.prop_cycle'].by_key()['color']
colors = ["#4878CF", "#6ACC65", "#D65F5F", "#B47CC7", "#C4AD66", "#77BEDB"]
violin_color = "#4878CF"
plt.rcParams.update({'figure.constrained_layout.use': True})
plt.rcParams.update({'savefig.dpi': 100})
average_speeds = np.mean(speed_groups, axis=1)
def load(session, group_name, rel_path):
"""Load a pickle.
"""
if group_name is not None:
path = f"{pickles_path}/{session}/{group_name}/{rel_path}"
else:
path = f"{pickles_path}/{session}/{rel_path}"
with open(path, 'rb') as f:
return pickle.load(f)
def ok_bounds(values, inter_quartile_factor=3):
"""Bounds of accepted values defined in terms of the inter-quartile range.
"""
q1 = np.nanpercentile(values, 25)
q3 = np.nanpercentile(values, 75)
span = inter_quartile_factor * (q3 - q1)
return q1 - span, q3 + span
def load_pooled(group_name, rel_paths, remove_outliers=False, inter_quartile_factor=3):
"""Load speed-pooled data into values_container.
"""
values_container = [[[] for _ in rats] for _ in rel_paths]
sessions_container = [[] for _ in rats]
for session in sessions:
rat_index = rats.index(session.split('.')[0])
for var_num, rel_path in enumerate(rel_paths):
rat_values = load(session, group_name, rel_path)
for values in rat_values:
if (~np.isnan(values)).any():
values_container[var_num][rat_index].append(values)
if var_num == 0:
sessions_container[rat_index].append(session)
if remove_outliers:
for var_num in range(len(rel_paths)):
for rat_index in range(len(rats)):
lower_bound, upper_bound = ok_bounds(values_container[var_num][rat_index], inter_quartile_factor)
with np.errstate(invalid='ignore'):
out_of_bounds = ((values_container[var_num][rat_index] < lower_bound) |
(values_container[var_num][rat_index] > upper_bound))
values_container[var_num][rat_index] = np.where(out_of_bounds, np.nan,
values_container[var_num][rat_index])
return values_container, sessions_container
def nan_regress(x, y, only_slope=True):
"""Perform linear regression ignoring nans.
"""
not_nan = ~np.isnan(y) & ~np.isnan(x)
if np.sum(not_nan):
fit = linregress(x[not_nan], y[not_nan])
if only_slope:
return fit[0]
else:
return fit
else:
return np.nan
def summary_pooled(rats_values, axes, axes_summary, averaged_speeds, name, mean_line_width=1.5, slopes_x_label='',
p_pos=0, min_points=5):
rats_speed_slopes = [[] for _ in rats]
max_num_values = len(average_speeds)
mean_rats_values = []
# plot shaded area with std
all_values = np.vstack(rats_values)
mean = np.nanmean(all_values, axis=0)
std = np.nanstd(all_values, axis=0)
axes_summary[1].fill_between(average_speeds, mean-std/2, mean+std/2, color='C7', alpha=0.2)
for rat_index in range(len(rats)):
rat_speed_slope_weights = []
rat_values = np.array(rats_values[rat_index])
mean_rat_values = []
for column in rat_values.T:
if np.sum(~np.isnan(column)) >= min_points:
mean_rat_values.append(np.nanmean(column))
else:
mean_rat_values.append(np.nan)
mean_rats_values.append(mean_rat_values)
flat_rat_values = rat_values.flatten()
flat_speeds = np.concatenate([averaged_speeds for _ in range(rat_values.shape[0])])
grand_regress = nan_regress(flat_speeds, flat_rat_values, only_slope=False)
# calculate field speed slopes and their weights
for values in rat_values:
not_nan = ~np.isnan(values)
not_nan_sum = np.sum(not_nan)
if not_nan_sum > 1:
rats_speed_slopes[rat_index].append(linregress(averaged_speeds[not_nan], values[not_nan])[0])
rat_speed_slope_weights.append(not_nan_sum/max_num_values)
axes[rat_index].plot(average_speeds, average_speeds * grand_regress.slope + grand_regress.intercept, color='k',
linestyle='dashed', label=f'fit')
axes[rat_index].annotate(f"p={grand_regress.pvalue:.1e}", (0.6, 0.85), xycoords="axes fraction",
fontsize="x-small")
print(f"{rats[rat_index]}:\nWald test: N = {np.sum(~np.isnan(flat_rat_values))}, R = {grand_regress.rvalue},"
f"p = {grand_regress.pvalue:.2e}")
not_nan = ~np.isnan(flat_speeds) & ~np.isnan(flat_rat_values)
tau, p_tau = kendalltau(flat_speeds[not_nan], flat_rat_values[not_nan])
print(f"Kendal Tau test: Tau = {tau}, p = {p_tau}")
summary_general(rat_index, averaged_speeds, mean_rat_values, rats_speed_slopes, rat_speed_slope_weights,
grand_regress, axes, axes_summary, name, mean_line_width=mean_line_width,
slopes_x_label=slopes_x_label, p_pos=p_pos)
with warnings.catch_warnings():
warnings.simplefilter("ignore", category=RuntimeWarning)
grand_mean = np.nanmean(mean_rats_values, axis=0)
axes_summary[1].plot(average_speeds, grand_mean, 'k', linewidth=mean_line_width)
def summary_general(rat_index, mean_x, mean_y, slopes, slope_weights, grand_regress, axes, axes_summary, name,
plot_slopes=True, remove_outliers=True, inter_quartile_factor=3, min_marker_size=1,
max_marker_size=5, mean_line_width=1.5, wilcoxon_test=True, slopes_x_label='', p_pos=0):
axes[rat_index].plot(mean_x, mean_y, color='k', linewidth=mean_line_width, label='mean')
axes_summary[1].plot(mean_x, mean_y, '.-', label=rats[rat_index], color=colors[rat_index])
axes_summary[1].set_ylabel(name)
axes_summary[0].set_xlabel(slopes_x_label)
# mean and single-field place field size vs speed slopes
if plot_slopes:
if remove_outliers:
lower_bound, upper_bound = ok_bounds(slopes[rat_index], inter_quartile_factor)
slopes_ok = (slopes[rat_index] >= lower_bound) & (slopes[rat_index] <= upper_bound)
slopes[rat_index] = np.array(slopes[rat_index])[slopes_ok]
slope_weights = np.array(slope_weights)[slopes_ok]
y_bottom = sum([len(slopes[smaller_rat_index]) for smaller_rat_index in range(rat_index)])
y_top = y_bottom + len(slopes[rat_index])
axes_summary[0].plot(grand_regress.slope * np.ones(2), (y_bottom, y_top), color='C7', label="regress all")
# mean_rat_value_slopes = nan_regress(mean_x, mean_y)
# axes_summary[0].plot(mean_rat_value_slopes * np.ones(2), (y_bottom, y_top), color='C7', label="f(mean(x))")
if rat_index == len(rats) - 1:
axes_summary[0].set_ylim([0, y_top])
else:
axes_summary[0].axhline(y_top, color='C7', zorder=0)
axes_summary[0].axvline(0, color='C7', linestyle='dotted')
axes_summary[0].plot(np.average(slopes[rat_index], weights=slope_weights) * np.ones(2), (y_bottom, y_top),
color='k', label="mean")
sorted_indices = np.argsort(slopes[rat_index])
marker_sizes = min_marker_size + (max_marker_size-min_marker_size)*np.array(slope_weights)[sorted_indices]
axes_summary[0].scatter(np.array(slopes[rat_index])[sorted_indices], range(y_bottom, y_top),
color=colors[rat_index], s=marker_sizes, label=rats[rat_index], linewidths=0.0)
if wilcoxon_test:
if len(slopes[rat_index]) >= 10:
statistic, p_value = wilcoxon(slopes[rat_index])
axes_summary[0].annotate(f"p = {p_value:.2f}", (p_pos, (y_bottom + y_top)/2), xycoords='data',
fontsize='small', verticalalignment='center')
print(f"Wilcoxon test: N = {len(slopes[rat_index])}, p = {p_value:.2e}")
else:
axes_summary[0].set_axis_off()
def finish(fig, axes, name, group_name, summary=False, x_labels=None, y_label="Place field #", close_figure=1):
# title = fig.suptitle(name)
# bbox_extra_artists = [title]
bbox_extra_artists = []
if x_labels is None:
x_labels = ["Running speed (cm/s)"]
for row_num, x_label in zip(range(axes.shape[0] - 1, -1, -1), x_labels[::-1]):
if not summary:
for col_num in range(axes.shape[-1]):
axes[row_num, col_num].set_xlabel(x_label)
else:
axes[row_num, 1].set_xlabel(x_label)
if summary:
handles, labels = axes[-1][0].get_legend_handles_labels()
by_label = dict(zip(labels, handles))
legend = axes[-1][0].legend(by_label.values(), by_label.keys(), loc='upper center', bbox_to_anchor=(0.5, -0.25),
fontsize='x-small', ncol=4)
legend.get_frame().set_linewidth(0.6)
bbox_extra_artists.append(legend)
for row_num in range(axes.shape[0]):
axes[row_num, 0].set_ylabel(y_label)
# axes[row_num, 0].axhline(0, color='C7', linewidth=1)
x_lim = axes[row_num, 0].get_xlim()
lim = np.max(np.abs(x_lim))
axes[row_num, 0].set_xlim((-lim, lim))
# axes[row_num, 1].yaxis.set_major_formatter(FormatStrFormatter('%i'))
axes[row_num, 1].yaxis.set_major_locator(MaxNLocator(integer=True))
else:
for col_num in range(axes.shape[-1]):
axes[0, col_num].set_title(rats[col_num])
handles, full_labels = axes[-1, col_num].get_legend_handles_labels()
labels = []
for label in full_labels:
if '.' in label:
labels.append(label.split('.')[1])
else:
labels.append(label)
by_label = dict(zip(labels, handles))
legend = axes[-1, col_num].legend(by_label.values(), by_label.keys(), loc='upper left', fontsize='x-small',
ncol=2, bbox_to_anchor=(0, -0.45), borderaxespad=0)
bbox_extra_artists.append(legend)
for row_num in range(axes.shape[0]):
for col_num in range(axes.shape[-1]):
axes[row_num, col_num].spines['right'].set_visible(False)
axes[row_num, col_num].spines['top'].set_visible(False)
fig.align_ylabels()
group_name_path = f"{group_name}/" if group_name is not None else ''
fig.savefig(f"{figures_path}/{group_name_path}{name}", bbox_extra_artists=bbox_extra_artists,
bbox_inches='tight')
if close_figure:
plt.close(fig)
def mean_error(predicted, true, ax):
error = np.nanmean((true-predicted)**2)
ax.annotate(f"{error:.1f}", (1, 0.07), xycoords='axes fraction', horizontalalignment='right', fontsize='small')
return error
def intercept_delta(x, y, all_intercepts, all_deltas):
flat_x = np.concatenate([x_group*np.ones(len(y_group)) for x_group, y_group in zip(x, y)])
flat_y = np.concatenate(y)
regress = linregress(flat_x, flat_y)
intercept = regress.intercept
all_intercepts.append(intercept)
delta = regress.slope * (x[-1] - x[0])
all_deltas.append(delta)
def intercept_delta_error(predicted_intercept, predicted_delta, true_intercept, true_delta, ax):
error = abs(predicted_intercept - true_intercept) + abs(predicted_delta - true_delta)
ax.annotate(f"{error:.1f}", (1, 0.2), xycoords='axes fraction', horizontalalignment='right', fontsize='small')
def deviation_delta_error(deviation, predicted_delta, true_delta, ax):
error = abs(predicted_delta - true_delta) + deviation
ax.annotate(f"{error:.1f}", (1, 0.33), xycoords='axes fraction', horizontalalignment='right', fontsize='small')
def pooled_violins(title, group_name, names, rats_pooled_values, pairwise_increments=True, bottom_percentile=None,
top_percentile=None, increments_bottom_percentile=None, increments_top_percentile=None, bw=None,
ax=None, increments_ax=None, plot_y_labels=True, increments_y_labels=None,
fig_size=None, close_figure=1, skip=1, true_means=None, true_intercepts=None, true_deltas=None,
delta_delta=False, delta_delta_path=None):
if ax is None:
own_figure = True
fig, axes = plt.subplots(len(names), 1 + pairwise_increments, sharex='col', squeeze=False, figsize=fig_size)
ax = axes[:, 0]
if pairwise_increments:
increments_ax = axes[:, 1]
else:
increments_ax = None
else:
own_figure = False
all_means = []
# all_intercepts = []
# all_deltas = []
for row_num, name in enumerate(names):
all_values = rats_pooled_values[row_num][0]
for rat_index in range(1, len(rats) - 1):
all_values = np.vstack((all_values, rats_pooled_values[row_num][rat_index]))
clean_values = []
x = []
for group_num, values_group in enumerate(all_values.T):
clean_values_group = values_group[~np.isnan(values_group)]
if len(clean_values_group):
clean_values.append(clean_values_group)
x.append(average_speeds[group_num])
parts = ax[row_num].violinplot(clean_values, x, showmeans=False, showextrema=False, bw_method=bw,
widths=0.5 * (average_speeds[1] - average_speeds[0]))
for pc in parts['bodies']:
pc.set_alpha(0.5)
pc.set_facecolor(violin_color)
all_means.append(np.nanmean(all_values, axis=0))
ax[row_num].plot(average_speeds, all_means[-1], '.-', color='k')
if len(true_means):
deviation = mean_error(all_means[-1], true_means.pop(0), ax[row_num])
# intercept_delta(x, clean_values, all_intercepts, all_deltas)
# if len(true_deltas):
# true_delta = true_deltas.pop(0)
# intercept_delta_error(all_intercepts[-1], all_deltas[-1],
# true_intercepts.pop(0), true_delta, ax[row_num])
# deviation_delta_error(deviation, all_deltas[-1], true_delta, ax[row_num])
if bottom_percentile is not None and top_percentile is not None:
ax[row_num].set_ylim([0.9 * np.nanpercentile(all_values, bottom_percentile),
np.nanpercentile(all_values, top_percentile)])
if plot_y_labels:
ax[row_num].set_ylabel(name)
if pairwise_increments:
if delta_delta: # increase in place field parameters wrt. baseline at characteristic running speed
mean_deltas = within_field_increases(group_name, delta_delta_path, ax=increments_ax[row_num])
all_means.append(mean_deltas)
else: # increase in place field parameters between adjacent speed bins
increments = []
increments_x = []
for speed_group_num in range(len(speed_groups) - 1 - skip):
increments_raw = all_values[:, speed_group_num + 1 + skip] - all_values[:, speed_group_num]
not_nan = ~np.isnan(increments_raw)
increments.append(increments_raw[not_nan])
x = (speed_groups[speed_group_num][1] + speed_groups[speed_group_num + 1 + skip][0])/2
increments_x.append(x)
# if len(increments[-1]) >= 10:
# statistic, p_value = wilcoxon(increments[-1])
# print(f"Pairwise increments. Wilcoxon test: N = {len(increments)}, p = {p_value:.2e}")
# all_increments = np.concatenate(increments)
# statistic, p_value = wilcoxon(all_increments)
# print(f"Increments Wilcoxon test: N = {all_increments.size}, p = {p_value:.2e}")
parts = increments_ax[row_num].violinplot(increments, positions=increments_x, showmeans=False,
showextrema=False, bw_method=bw,
widths=0.5 * (average_speeds[1] - average_speeds[0]))
for pc in parts['bodies']:
pc.set_alpha(0.5)
pc.set_facecolor(violin_color)
all_means.append(np.array([np.mean(increments_group) for increments_group in increments]))
increments_ax[row_num].plot(increments_x, all_means[-1], '.', color='k')
if len(true_means):
deviation = mean_error(all_means[-1], true_means.pop(0), increments_ax[row_num])
# intercept_delta(increments_x, increments, all_intercepts, all_deltas)
# if len(true_deltas):
# true_delta = true_deltas.pop(0)
# intercept_delta_error(all_intercepts[-1], all_deltas[-1],
# true_intercepts.pop(0), true_delta, increments_ax[row_num])
# deviation_delta_error(deviation, all_deltas[-1], true_delta, increments_ax[row_num])
increments_ax[row_num].axhline(0, linestyle='dotted', color='C7')
if plot_y_labels:
if increments_y_labels is not None:
y_label = increments_y_labels[row_num]
else:
y_label = f"Within-field\n"rf"$\Delta$ {name.lower()}"
increments_ax[row_num].set_ylabel(y_label)
if increments_bottom_percentile is not None and increments_top_percentile is not None:
increments_ax[row_num].set_ylim([np.nanpercentile(increments, increments_bottom_percentile),
np.nanpercentile(increments, increments_top_percentile)])
if own_figure:
fig.savefig(f"{figures_path}/{group_name}/{title} - Violins")
if close_figure:
plt.close(fig)
return all_means
def plot_pooled(title, names, paths, remove_outliers=False, inter_quartile_factor=3, alpha=0.6,
pairwise_increments=True, bottom_percentile=None, top_percentile=None, increments_bottom_percentile=None,
increments_top_percentile=None, violin_ax=None, violin_increments_ax=None,
violin_increments_y_labels=None, fig_size=None, fig_summary_size=None, fig_violins_size=None,
close_figures=1, slopes_x_label='', p_pos=0, summary_y_lims=None, min_points=5, vertical_layout=False,
delta_delta=False, delta_delta_path=None):
true_means = []
# true_intercepts = []
# true_deltas = []
for group_num, group_name in enumerate(group_names):
num_rows = len(names)
fig, ax = plt.subplots(num_rows, len(rats), sharey='row', figsize=fig_size, squeeze=False)
if vertical_layout:
fig_summary, ax_s = plt.subplots(2, num_rows, figsize=fig_summary_size, squeeze=False)
ax_summary = ax_s.T
else:
fig_summary, ax_summary = plt.subplots(num_rows, 2, figsize=fig_summary_size, squeeze=False)
if summary_y_lims is not None:
for axis in ax_summary[:, -1]:
axis.set_ylim(summary_y_lims)
rats_pooled_values, rats_sessions = load_pooled(group_name, paths, remove_outliers, inter_quartile_factor)
for row_num, name in enumerate(names):
for rat_index in range(len(rats)):
for values, session in zip(rats_pooled_values[row_num][rat_index], rats_sessions[rat_index]):
session_num = [s.split('.')[0] for s in
sessions[:sessions.index(session)]].count(session.split('.')[0])
ax[row_num, rat_index].plot(average_speeds, values, color=colors[session_num % len(colors)],
alpha=alpha, label=session)
ax[row_num, 0].set_ylabel(name)
summary_pooled(rats_pooled_values[row_num], ax[row_num], ax_summary[row_num], average_speeds, name,
slopes_x_label=slopes_x_label, p_pos=p_pos, min_points=min_points)
finish(fig, ax, f"{title} - All", group_name, close_figure=close_figures)
finish(fig_summary, ax_summary, f"{title} - Summary", group_name, summary=True, close_figure=close_figures)
increments_ax = violin_increments_ax[:, group_num] if violin_increments_ax is not None else None
increments_y_labels = violin_increments_y_labels if violin_increments_y_labels is not None else None
all_means = pooled_violins(title, group_name, names, rats_pooled_values, pairwise_increments, bottom_percentile,
top_percentile, increments_bottom_percentile, increments_top_percentile,
ax=violin_ax[:, group_num] if violin_ax is not None else None,
increments_ax=increments_ax, plot_y_labels=group_num == 0,
increments_y_labels=increments_y_labels, fig_size=fig_violins_size,
# true_intercepts=true_intercepts.copy(), true_deltas=true_deltas.copy(),
close_figure=close_figures, true_means=true_means.copy(),
delta_delta=delta_delta, delta_delta_path=delta_delta_path)
if group_num == 0:
true_means = all_means
# true_intercepts = all_intercepts
# true_deltas = all_deltas
def clean_scatter(values, inter_quartile_factor):
lower_bound, upper_bound = ok_bounds(np.concatenate(values), inter_quartile_factor)
for group_num, group_y in enumerate(values):
field_y_array = np.array(group_y)
outlier = (field_y_array < lower_bound) | (field_y_array > upper_bound)
values[group_num] = np.where(outlier, np.nan, values[group_num])
def load_scatter(group_name, paths_x, paths_y, remove_outliers=False, inter_quartile_factor=3, inverse=False):
x_containers = [[[] for _ in rats] for _ in paths_x]
y_containers = [[[] for _ in rats] for _ in paths_y]
sessions_container = [[] for _ in rats]
for session in sessions:
rat_index = rats.index(session.split('.')[0])
for x_num, (path_x, x_container) in enumerate(zip(paths_x, x_containers)):
x = load(session, group_name, path_x)
for y_num, (path_y, y_container) in enumerate(zip(paths_y, y_containers)):
y = load(session, group_name, path_y)
for x_group, y_group in zip(x, y):
if len(x_group):
if y_num == 0:
x_container[rat_index].append(np.array(x_group))
if x_num == 0 and not inverse:
y_container[rat_index].append(np.array(y_group))
elif x_num == 0 and inverse:
y_container[rat_index].append(1/np.array(y_group))
if x_num == y_num == 0:
sessions_container[rat_index].append(session)
if remove_outliers:
for y_num in range(len(paths_y)):
for rat_index in range(len(rats)):
clean_scatter(y_containers[y_num][rat_index], inter_quartile_factor)
return x_containers, y_containers, sessions_container
def moving_average(xs, ys, window_size, window_stride, window_min_points, min_x=None, return_std=False):
x = np.concatenate(xs)
y = np.concatenate(ys)
if min_x is None:
min_x = np.nanmin(x) - window_size / 2
max_x = np.nanmax(x) + window_size / 2
start_xs = [min_x]
while start_xs[-1] + window_size < max_x:
start_xs.append(start_xs[-1] + window_stride)
end_xs = np.array(start_xs) + window_size
mean_x = (start_xs + end_xs) / 2
mean_y = []
std = []
for start_x, end_x in zip(start_xs, end_xs):
y_window = y[(start_x < x) & (x < end_x)]
if len(y_window) >= window_min_points:
mean_y.append(np.nanmean(y_window))
std.append(np.nanstd(y_window))
else:
mean_y.append(np.nan)
std.append(np.nan)
if return_std:
return mean_x, np.array(mean_y), np.array(std)
else:
return mean_x, np.array(mean_y)
def moving_density(xs, ys, window_size, window_stride, min_x=None):
x = np.concatenate(xs)
y = np.concatenate(ys)
if min_x is None:
min_x = np.nanmin(x)
max_x = np.nanmax(x)
start_xs = [min_x]
while start_xs[-1] + window_size < max_x:
start_xs.append(start_xs[-1] + window_stride)
end_xs = np.array(start_xs) + window_size
mean_x = (start_xs + end_xs) / 2
dens = []
for start_x, end_x in zip(start_xs, end_xs):
y_window = y[(start_x < x) & (x < end_x)]
dens.append(np.sum(~np.isnan(y_window)))
return mean_x, np.array(dens)/window_size
def summary_scatter(x, y, window_size, window_stride, window_min_points, axes, axes_summary, name, plot_slopes,
mean_line_width=1.5, min_x=0, p_pos=0, slopes_x_lim=None, slopes_x_label='', shade=False,
annotation_xy=(0.6, 0.15)):
rats_slopes = [[] for _ in rats]
max_count = max([max([len(group_x) for group_x in x[rat_index]]) for rat_index in range(len(rats))])
mean_rats_y = []
longest_mean_x = []
# shaded area with std
if shade:
mean_x, mean_y, std = moving_average(np.concatenate(x), np.concatenate(y), window_size, window_stride,
window_min_points, min_x=min_x - window_size/2, return_std=True)
axes_summary[1].fill_between(mean_x, mean_y - std/2, mean_y + std/2, color="C7", alpha=0.2)
for rat_index in range(len(rats)):
# calculate group slopes and weights
slope_weights = []
for x_group, y_group in zip(x[rat_index], y[rat_index]):
if len(x_group) > 1:
slope_weights.append(len(x_group)/max_count)
rats_slopes[rat_index].append(nan_regress(x_group, y_group))
mean_x, mean_y = moving_average(x[rat_index], y[rat_index], window_size, window_stride, window_min_points,
min_x=min_x - window_size/2)
mean_rats_y.append(mean_y)
if len(mean_x) > len(longest_mean_x):
longest_mean_x = mean_x
if plot_slopes:
grand_regress = nan_regress(np.concatenate(x[rat_index]), np.concatenate(y[rat_index]), only_slope=False)
regression_line_x = np.array((np.nanmin(np.concatenate(x[rat_index])), np.nanmax(np.concatenate(x[rat_index]))))
axes[rat_index].plot(regression_line_x, regression_line_x * grand_regress.slope + grand_regress.intercept,
color='k', linestyle='dashed', label=f'fit')
n = np.sum(~np.isnan(np.concatenate(x[rat_index])) & ~np.isnan(np.concatenate(y[rat_index])))
print(f"{rats[rat_index]}:\nWald test: N = {n}, p = {grand_regress.pvalue:.2e}")
all_x = np.concatenate(x[rat_index])
all_y = np.concatenate(y[rat_index])
not_nan = ~np.isnan(all_x) & ~np.isnan(all_y)
tau, p_tau = kendalltau(all_x[not_nan], all_y[not_nan])
print(f"Kendal Tau test: Tau = {tau}, p = {p_tau}")
axes[rat_index].annotate(f"R = {grand_regress.rvalue:.2f}\np = {p_tau:.1e}", annotation_xy,
xycoords="axes fraction", fontsize="small")
else:
grand_regress = np.nan
summary_general(rat_index, mean_x, mean_y, rats_slopes, slope_weights, grand_regress, axes, axes_summary, name,
plot_slopes, p_pos=p_pos, slopes_x_label=slopes_x_label)
if slopes_x_lim is not None:
axes_summary[0].set_xlim(slopes_x_lim)
max_mean_length = max([len(mean_y) for mean_y in mean_rats_y])
padded_rats_means = [np.pad(mean_y, (0, max_mean_length - len(mean_y)), constant_values=np.nan)
for mean_y in mean_rats_y]
with warnings.catch_warnings():
warnings.simplefilter("ignore", category=RuntimeWarning)
grand_mean = np.nanmean(padded_rats_means, axis=0)
axes_summary[1].plot(longest_mean_x, grand_mean, 'k', linewidth=mean_line_width)
def remove_nans(all_xs, all_y):
not_nans = ~np.isnan(all_y)
for all_x in all_xs:
not_nans &= ~np.isnan(all_x)
all_xs = np.array([all_x[not_nans] for all_x in all_xs])
return all_xs, all_y[not_nans]
def scatter_violins(all_x, all_y, name_x, name_y, ax, bw=0.5):
# remove nans
not_nan = ~(np.isnan(all_x) | np.isnan(all_y))
all_x = all_x[not_nan]
all_y = all_y[not_nan]
# divide points into speed groups
grouped_ys = [[] for _ in range(len(speed_groups))]
for x, y in zip(all_x, all_y):
for speed_group_num, speed_group in enumerate(speed_groups):
if speed_group[0] <= x < speed_group[1]:
grouped_ys[speed_group_num].append(y)
# plot violin
ax.violinplot(grouped_ys, average_speeds, showmeans=False, showextrema=False, bw_method=bw,
widths=0.5 * (average_speeds[1] - average_speeds[0]))
ax.plot(average_speeds, [np.mean(group_ys) for group_ys in grouped_ys], '.-', color='k')
ax.set_ylabel(name_y)
ax.set_xlabel(name_x)
def sci_notation(num, decimal_digits=1, precision=None, exponent=None):
"""
Returns a string representation of the scientific
notation of the given number formatted for use with
LaTeX or Mathtext, with specified number of significant
decimal digits and precision (number of decimal digits
to show). The exponent to be used can also be specified
explicitly.
"""
if num == 0:
return ''
else:
if exponent is None:
exponent = int(np.floor(np.log10(abs(num))))
coeff = round(num / float(10**exponent), decimal_digits)
if precision is None:
precision = decimal_digits
return r"${0:.{2}f}\cdot10^{{{1:d}}}$".format(coeff, exponent, precision)
def two_d_hist(all_x, all_y, x_label, y_label, fig_name, x_min, x_max, num_x_bins, y_min, y_max, num_y_bins,
num_x_ticks=5, logarithm=True, line_width=1.5, close_figures=True, fig_size=(5.5/2.54, 5.56/2.54),
min_points=5, fit=False, tau_stat=False, r_pos=(0.7, 0.85), external_ax=None):
x_bin_size = (x_max - x_min) / (num_x_bins - 1)
y_bin_size = (y_max - y_min) / (num_y_bins - 1)
hist = np.zeros((num_y_bins, num_x_bins))
for x, y in zip(all_x, all_y):
if x_min <= x <= x_max and y_min <= y <= y_max:
hist[int(round((y - y_min) / y_bin_size)), int(round((x - x_min) / x_bin_size))] += 1
mean = np.sum(np.linspace(y_min, y_max, num_y_bins)[np.newaxis].T * hist, axis=0) / np.sum(hist, axis=0)
mean[np.sum(hist, axis=0) < min_points] = np.nan
if logarithm:
hist += 1
norm = colors_lib.LogNorm(vmin=1)
else:
norm = colors_lib.Normalize(vmin=0)
if external_ax is None:
fig, ax = plt.subplots(figsize=fig_size)
else:
ax = external_ax
heatmap = ax.matshow(hist, origin='lower', norm=norm, aspect='auto',
extent=(x_min - x_bin_size/2, x_max + x_bin_size /2,
y_min - y_bin_size/2, y_max + y_bin_size/2))
bar = plt.colorbar(heatmap, ax=ax, aspect=60, orientation='horizontal')
bar.ax.set_xlabel("Count + 1")
ax.axhline(0, linestyle='dashed', color='white')
ax.plot(np.linspace(x_min, x_max, num_x_bins), mean, color='C3', linewidth=line_width)
ax.set_xlabel(x_label)
# ax.set_ylabel(y_label.replace('\n', ' '))
if y_label is not None:
ax.set_ylabel(y_label)
ax.xaxis.set_ticks_position("bottom")
if num_x_ticks is not None:
ax.set_xticks(np.linspace(x_min, x_max, num_x_ticks))
if fit:
not_nan = (~np.isnan(all_x)) & (~np.isnan(all_y))
slope, intercept, r, p, e = linregress(all_x[not_nan], all_y[not_nan])
x = np.array((x_min, x_max))
y = x*slope + intercept
ax.plot(x, y, 'k')
string = f"R = {r:.2f}"
if tau_stat:
tau, p_tau = kendalltau(all_x[not_nan], all_y[not_nan])
string += f"\np = {p_tau:.0e}"
ax.annotate(string, r_pos, color='white', xycoords='axes fraction')
if external_ax is None:
if close_figures:
plt.close(fig)
fig.savefig(fig_name, bbox_inches='tight')
def plot_scatter(title, names_x, paths_x, names_y, paths_y, window_sizes, window_strides, window_min_points, plot_slopes,
remove_outliers=False, inter_quartile_factor=3, alpha=0.6, summary=True, all_together=None,
all_together_means=None, all_together_dens=None, all_together_hists=None, hist_dicts=None,
plot_violins=(0,), analysis_of_variance=False, little_names_x=None,
fig_size=None, fig_summary_size=None, fig_all_size=None, fig_hist_size=None, fig_violins_size=None,
close_figures=True, p_pos=0, slopes_x_lim=None, slopes_x_label='', hyperbolic_fit=None,
annotation_xy=(0.08, 0.1), mean_line_width=1.5, shade=False, inverse=False, y_lim=None):
for group_name in group_names:
num_rows = max(len(names_x), len(names_y))
fig, ax = plt.subplots(num_rows, len(rats), sharey='row', figsize=fig_size, squeeze=False)
rats_xs, rats_ys, rats_sessions = load_scatter(group_name, paths_x, paths_y, remove_outliers,
inter_quartile_factor, inverse=inverse)
for rat_index in range(len(rats)):
row_num = 0
for y_num, name_y in enumerate(names_y):
for x_num, name_x in enumerate(names_x):
for x_group, y_group, session in zip(rats_xs[x_num][rat_index], rats_ys[y_num][rat_index],
rats_sessions[rat_index]):
session_num = [s.split('.')[0] for s in
sessions[:sessions.index(session)]].count(session.split('.')[0])
ax[row_num, rat_index].plot(x_group, y_group, '.', color=colors[session_num % len(colors)],
alpha=alpha, label=session)
ax[row_num, 0].set_ylabel(name_y)
if y_lim is not None:
for axis in ax[row_num]:
axis.set_ylim(y_lim)
row_num += 1
if all_together is not None:
fig_all, ax_all = plt.subplots(sum(all_together), 1, sharey='row', squeeze=False, figsize=fig_all_size)
if y_lim is not None:
for axis_all in ax_all:
axis_all[0].set_ylim(y_lim)
if sum(plot_violins):
fig_violins, ax_violins = plt.subplots(sum(plot_violins), 1, sharex='col', squeeze=False,
figsize=fig_violins_size)
def hyperbola(x_point, theta_time):
return -360/(x_point * theta_time)
row_num = 0
combo_num = 0
violin_num = 0
for y_num, name_y in enumerate(names_y):
all_y_arrays = []
for rat_index in range(len(rats)):
for y_group in rats_ys[y_num][rat_index]:
all_y_arrays.append(y_group)
all_y = np.concatenate(all_y_arrays)
all_xs = []
for x_num, name_x in enumerate(names_x):
if all_together[combo_num]:
all_x_arrays = []
for rat_index in range(len(rats)):
for group_num, x_group in enumerate(rats_xs[x_num][rat_index]):
all_x_arrays.append(x_group)
ax_all[row_num, 0].plot(x_group, rats_ys[y_num][rat_index][group_num], '.',
color=colors[rat_index], alpha=alpha, label=rats[rat_index])
ax_all[row_num, 0].set_ylabel(names_y[y_num])
ax_all[row_num, 0].set_xlabel(names_x[x_num])
ax_all[row_num, 0].spines['top'].set_visible(False)
ax_all[row_num, 0].spines['right'].set_visible(False)
all_x = np.concatenate(all_x_arrays)
all_xs.append(all_x)
if all_together_hists is not None and all_together_hists[combo_num]:
fig_name = f"{figures_path}/{group_name}/{title} - 2D histogram {combo_num}"
two_d_hist(all_x, all_y, name_x, name_y, fig_name, **hist_dicts[combo_num],
close_figures=close_figures, num_x_ticks=5, fit=plot_slopes[combo_num],
fig_size=fig_hist_size)
if all_together_means is not None and all_together_means[combo_num]:
mean_x, mean_y = moving_average(all_x_arrays, all_y_arrays, window_sizes[combo_num],
window_strides[combo_num],
window_min_points)
ax_all[row_num, 0].plot(mean_x, mean_y, 'k', linewidth=mean_line_width)
if all_together_dens is not None and all_together_dens[combo_num]:
mean_x, dens = moving_density(all_x_arrays, all_y_arrays, window_sizes[combo_num],
window_strides[combo_num])
ax_dens = ax_all[row_num, 0].twinx()
ax_dens.plot(mean_x, dens)
ax_dens.set_ylabel("Density")
if plot_slopes[combo_num]:
if hyperbolic_fit is not None and hyperbolic_fit[combo_num]:
tau = - 360 * nan_regress(all_x, 1 / all_y)
x = np.linspace(np.nanmin(all_x), np.nanmax(all_x), 100)
y = hyperbola(x, tau)
ax_all[row_num, 0].plot(x, y, 'k', linestyle='dashed')
annotation = r"m = $-\frac{360}{"+str(round(tau, 2))+"\cdot v}$"
ax_all[row_num, 0].annotate(annotation, xy=(0.1, 0.1), xycoords='axes fraction',
horizontalalignment='left')
fit = nan_regress(all_x, all_y, only_slope=False)
print(f"y = {fit[0]} * x + {fit[1]}")
x = np.array((np.nanmin(all_x), np.nanmax(all_x)))
y = x * fit[0] + fit[1]
ax_all[row_num, 0].plot(x, y, 'k', linestyle='dashed')
# p_string = sci_notation(fit[3])
ax_all[row_num, 0].annotate(f"$R$ = {fit[2]:.2f}""\n",
xy=annotation_xy, xycoords='axes fraction')
print(f"ALL: \nWald Test: N = {np.sum(~np.isnan(all_x) & ~np.isnan(all_y))}, "
f"p = {fit[3]:.2e}")
not_nan = ~np.isnan(all_y) & ~np.isnan(all_x)
tau, p_tau = kendalltau(all_x[not_nan], all_y[not_nan])
print(f"ALL: Kendal Tau test: Tau = {tau}, p = {p_tau}")
if sum(plot_violins) and plot_violins[combo_num]:
scatter_violins(all_x, all_y, name_x, name_y, ax_violins[violin_num][0])
violin_num += 1
row_num += 1
combo_num += 1
if analysis_of_variance:
if little_names_x is None:
little_names_x = [name_x for combo_num, name_x in enumerate(names_x)
if all_together[combo_num] and plot_slopes[combo_num]]
all_xs, all_y = remove_nans(all_xs, all_y)
hierarchical_lrt(all_xs[np.array(plot_slopes).astype(bool)].T, all_y[np.newaxis].T, little_names_x)
if sum(plot_violins):
fig_violins.savefig(f"{figures_path}/{group_name}/{title} - Violins", bbox_inches='tight')
if close_figures:
plt.close(fig_violins)
handles, labels = ax_all[-1, -1].get_legend_handles_labels()
by_label = dict(zip(labels, handles))
ax_all[-1, -1].legend(by_label.values(), by_label.keys(), loc='upper center', fontsize='small',
bbox_to_anchor=(0.5, -0.3), ncol=3)
fig_all.savefig(f"{figures_path}/{group_name}/{title} - Pooled", bbox_inches='tight')
if close_figures:
plt.close(fig_all)
if summary:
fig_summary, ax_summary = plt.subplots(num_rows, 2, figsize=fig_summary_size, squeeze=False)
row_num = 0
for x in rats_xs:
all_x = []
for rat_index in range(len(rats)):
for x_group in x[rat_index]:
all_x.append(x_group)
all_x = np.concatenate(all_x)
min_x = np.nanmin(all_x)
for y, y_name in zip(rats_ys, names_y):
summary_scatter(x, y, window_sizes[row_num], window_strides[row_num], window_min_points, ax[row_num],
ax_summary[row_num], y_name, plot_slopes[row_num], min_x=min_x, p_pos=p_pos,
slopes_x_lim=slopes_x_lim, slopes_x_label=slopes_x_label, shade=shade,
annotation_xy=annotation_xy)
row_num += 1
finish(fig_summary, ax_summary, f"{title} - Summary", group_name, summary=True, x_labels=names_x,
close_figure=close_figures)
fig.tight_layout(h_pad=3)
finish(fig, ax, f"{title} - All", group_name, x_labels=names_x, close_figure=close_figures)
def cycle_lengths_vs_mean_x(path_field_distances, path_field_xs, x_name, path_trajectory_distances,
path_trajectory_lengths, window_size, window_stride, window_min_points,
remove_outliers=True, inter_quartile_factor=3, alpha=0.6, fig_size=None,
close_figure=1, inverse=False, units="cm", r_pos=(0.6, 0.85)):
for group_name in group_names:
field_distances, field_xs, rats_sessions = load_scatter(group_name, [path_field_distances],
[path_field_xs], inverse=inverse)
trajectory_distances, trajectory_lengths, rats_sessions = \
load_scatter(group_name, [path_trajectory_distances,
# "PathLengths/single_cycles/speeds"
],
[path_trajectory_lengths])
fig, ax = plt.subplots(1, len(rats), sharey='row', figsize=fig_size, squeeze=False)
ax[0, 0].set_ylabel("Theta trajectory\nslope (cm/deg)")
all_xs = []
all_lengths = []
for rat_index in range(len(rats)):
if remove_outliers:
clean_scatter(field_xs[0][rat_index], inter_quartile_factor)
clean_scatter(trajectory_lengths[0][rat_index], inter_quartile_factor)
mean_distances, mean_xs = moving_average(field_distances[0][rat_index], field_xs[0][rat_index],
window_size, window_stride, window_min_points)
min_distance = mean_distances[0]
ds = mean_distances[1] - mean_distances[0]
rat_xs = []
rat_lengths = []
for group_trajectory_distances, group_trajectory_lengths, group_session in \
zip(trajectory_distances[0][rat_index], trajectory_lengths[0][rat_index], rats_sessions[rat_index]):
xs = []
lengths = []
for trajectory_distance, trajectory_length in zip(group_trajectory_distances, group_trajectory_lengths):
i_previous = int((trajectory_distance - min_distance) / ds)
i_next = i_previous + 1
remainder = (trajectory_distance - min_distance) % ds
if 0 <= i_previous and i_next < len(mean_xs):
xs.append(mean_xs[i_previous] * (1-remainder) + mean_xs[i_next] * remainder)
lengths.append(trajectory_length)
session_num = [s.split('.')[0] for s in
sessions[:sessions.index(group_session)]].count(group_session.split('.')[0])
ax[0, rat_index].plot(xs, lengths, '.', color=colors[session_num % len(colors)], alpha=alpha,
label=group_session)
rat_xs.append(xs)
rat_lengths.append(lengths)
rat_xs = np.concatenate(rat_xs)
rat_lengths = np.concatenate(rat_lengths)
all_xs.append(rat_xs)
all_lengths.append(rat_lengths)
x = np.array((np.nanmin(rat_xs), np.nanmax(rat_xs)))
fit = nan_regress(rat_xs, rat_lengths, only_slope=False)
ax[0, rat_index].plot(x, x*fit[0] + fit[1], 'k')
ax[0, rat_index].annotate(f"s = {fit[1]:.1f} + {fit[0]:.1f} v\nr = {fit[2]:.2f}\np = {fit[3]:.1e}",
xy=(0.08, 0.8), xycoords='axes fraction', fontsize='x-small')
x_label = f"Mean {x_name}\nat theta trajectory location ({units})"
fig_name = f"Single cycle theta trajectories vs mean {x_name}"
finish(fig, ax, fig_name, group_name, x_labels=[x_label], close_figure=close_figure)
all_xs = np.concatenate(all_xs)
all_lengths = np.concatenate(all_lengths)
file_name = f"{figures_path}/{group_name}/{fig_name} - 2D histogram"
two_d_hist(all_xs, all_lengths, x_label, "Theta trajectory length (cm)", file_name,
np.nanmin(all_xs), np.nanmax(all_xs), 25, np.nanmin(all_lengths), np.nanmax(all_lengths), 25,
fit=True, close_figures=close_figure, r_pos=r_pos, min_points=10)
def speed_histograms(plot_colorbars=True, fig_size=None, close_figure=1):
p = general_parameters['Tracking']
fig, ax = plt.subplots(1, len(rats), sharey='row', figsize=fig_size)
ax[0].set_ylabel("Speed (cm/s)")
# find largest values for displacement and speed
max_ds = [[] for _ in rats]
max_speeds = [[] for _ in rats]
for session in sessions:
rat_index = rats.index(session.split('.')[0])
tracking = initialize((Tracking,), session, None)['Tracking']
max_speeds[rat_index].append(np.nanmax(np.abs(tracking.speed_1D[tracking.run_type != -1])))
max_ds[rat_index].append(tracking.d_runs_span)
del tracking
max_speed = np.max(np.concatenate(max_speeds)) * 1.05
# calculate and plot speed histograms
for rat_index, rat in enumerate(rats):
speed_bin_size = p['speed_bin_size']
num_speed_bins = int(round(max_speed / speed_bin_size)) + 1
max_d = max(max_ds[rat_index])
spatial_bin_size = p['spatial_bin_size']
num_spatial_bins = int(round(max_d / spatial_bin_size)) + 1
speeds_vs_position = np.zeros((num_speed_bins, num_spatial_bins))
for session in sessions: