-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathlecture-plan.txt
515 lines (377 loc) · 11.9 KB
/
lecture-plan.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
Lecture 1
================================================================================
Administration stuff
Compiler and course organization
Abstract syntax trees, R_0
Lecture 2: Compiling Integers, Arithmetic, and Let
================================================================================
S-Expressions
quote
comma
Pattern Matching
match
Recursion
The HTDP recipe, grammar => recursive function
arith?
Interpreter for R_0
The R_1 Language
let expressions, overshadowing variables
evaluation order is left to right
The x86-64 Language
program is a sequence of instructions, they are stored in memory
arguments:
integer immediate values
registers
memory (map addresses to 64-bit value)
stack and frame layout (Fig. 2.6)
x86-64 version of
(+ 10 32) Fig 2.4
and
(+ 52 (- 10)) Fig 2.5
Compiler Correctness Diagram (p. 17)
Compiler Plan
Differences:
* instruction format, 2-arguments
* nesting expressions versus simple instruction arguments
* variables vs. registers
* multiple variables with the same name vs. unique names
of registers and memory locations
Gordian Knot between instruction selection and register allocation.
Cut by doing optimistic instruction selection.
Plan:
R_1
| uniquify
V
R_1
| flatten (emphasize this one, e.g. (+ (- 5) (- 10)) )
V
C_0
| select-instructions
V
x86*
| assign-homes
V
x86*
| patch-instructions
V
x86
Lecture 3: Register Allocation
================================================================================
Liveness Analysis
Build Interference Graph
Graph Coloring
Lecture 4: Register Allocation cont'd, Booleans & Control Flow
================================================================================
Review Reg. Allocation
(let ([a 1])
(let ([b 2])
(let ([f b])
(let ([e (+ a b)])
(let ([d f])
d)))))
After instruction selection:
(program (a b f e d)
(movq (int 1) (var a))
(movq (int 2) (var b))
(movq (var b) (var f))
(movq (var a) (var e))
(addq (var b) (var e))
(movq (var f) (var d))
(movq (var d) (reg rax)))
Liveness analysis
(program (a b f e d)
(movq (int 1) (var a)) (set 'a)
(movq (int 2) (var b)) (set 'a 'b)
(movq (var b) (var f)) (set 'a 'b 'f)
(movq (var a) (var e)) (set 'b 'f 'e)
(addq (var b) (var e)) (set 'f)
(movq (var f) (var d)) (set 'd)
(movq (var d) (reg rax))) (set)
Interference graph
a---b d
| |
| |
f---e
Graph coloring
0 rbx
1 rcx
2 rdx
a 0
b 1
f 1
e 0
d 0
(program 16
(movq (int 1) (reg rbx))
(movq (int 42) (reg rcx))
(movq (reg rcx) (reg rcx)) <-- delete b -> f
(movq (reg rbx) (reg rbx)) <-- delete a --> e
(addq (reg rcx) (reg rbx))
(movq (reg rcx) (reg rbx))
(movq (reg rbx) (reg rax)))
Patch Instructions
(program 16
(movq (int 1) (reg rbx))
(movq (int 42) (reg rcx))
(addq (reg rcx) (reg rbx))
(movq (reg rcx) (reg rbx))
(movq (reg rbx) (reg rax)))
Move Biasing
Move Graph:
a---e
b---f---d
With move biasing, we color d with 1 (rcx) to match f.
(program 16
(movq (int 1) (reg rbx))
(movq (int 42) (reg rcx))
(addq (reg rcx) (reg rbx))
(movq (reg rcx) (reg rcx)) <--- delete f -> d
(movq (reg rcx) (reg rax)))
(program 16
(movq (int 1) (reg rbx))
(movq (int 42) (reg rcx))
(addq (reg rcx) (reg rbx))
(movq (reg rcx) (reg rax)))
Booleans & Control Flow
exp ::= ... | (not exp) | (and exp exp) | (eq? exp exp)
| #f | #f | (if exp exp exp)
R_2 ::= (program exp)
interpreter R_2
'if' expects a boolean
'and' does short circuiting
'eq?' works on integers and on booleans (but not mixed)
type checking
types classify values: Integer, Boolean
goal: predict the type of value that an expression will produce
goal: reject programs that will error due to type mismatches
notice similarity between the interpreter and the type checker
Type checking is an "abstract interpretation"
Lecture 5: Booleans & Control Flow cont'd
================================================================================
Questions about register allocation?
flattening from R_2 to C_1:
arg ::= ... | #t | #f
exp ::= ... | (not arg) | (eq? arg arg)
stmt ::= ... | (if arg stmt* stmt*)
C_1 ::= (program (var*) stmt+)
* (if exp exp exp)
* (and exp exp)
select-instructions
* (assign lhs (eq? arg1 arg2))
cmpq s1, s2
puts the result in a special EFLAGS register
sete d
puts 0 or 1 into the destination based on the EFLAGS
caveat: destination must be a byte-sized register such as 'al'
that is part of larger register 'rax'
movzbq s, d
move from byte-sized register to 64-bit register
filling the rest with 0's
* keep 'if' statements
liveness analysis
* What about (if cnd thn-ss els-ss)?
* talk about conservative approximation
* store the life-after sets for the thn and els branches
(if cnd thn-ss thn-lives els-ss els-lives)
* how to deal with byte-sized registers like 'al'?
patch-instructions
* recurse through 'if'
* new instructions (may not require changes)
lower-conditionals
* more x86 instructions
* je label
jump to the label if the EFLAGS register is 'equal'
otherwise fall through to the next instruction
* jmp label
jump to label unconditionally
* (if cnd thn-ss els-ss)
==>
(cmpq (int 0) cnd)
(je elselabel)
thn-ss
(jmp endlabel)
(label elselabel)
els-ss
(label endlabel)
Walk through example translation from book
Lecture 6: Optimizing Control Flow
================================================================================
Redundancy in conditions:
(program
(if (eq? (read) 1) 42 0))
⇓ flatten
(program (t.1 t.2 if.1)
(assign t.1 (read))
(assign t.2 (eq? t.1 1)) ←
(if (eq? #t t.2) ←
((assign if.1 42))
((assign if.1 0)))
(return if.1))
Would be better as:
(program (t.1 t.2 if.1)
(assign t.1 (read))
(if (eq? t.1 1) ←
((assign if.1 42))
((assign if.1 0)))
(return if.1))
Our optimization should be as general as possible. So we should try
to get good results in somewhat more complicated situations.
(program
(if (let ([x 1])
(not (eq? 2 x)))
42
777))
⇓
(program (x.1 t.1 if.1)
(assign x.1 1)
(assign t.1 (read))
(if (eq? x.1 t.1)
((assign if.1 42))
((assign if.1 777)))
(return if.1))
How should we recognize such situations and generate the code?
What pass should we change or add?
Use a helper function inside flatten to help with 'if'.
Recurse over the condition.
(if cnd thn els)
flatten thn ⇒ new-thn thn-ss
flatten els ⇒ new-els els-ss
flatten-if cnd new-thn thn-ss new-els els-ss
cases:
#t, #f
(let ([x e]) body)
(not ,cnd2)
(if cnd2 thn2 els2)
==>
(if cnd2
(if thn2 thn els)
(if els2 thn els)
but that would duplicate code.
If we changed to an IR for CFGs
L1: thn
L2: els
(if cnd2
(if thn2 (jmp L1) (jmp L2))
(if els2 (jmp L1) (jmp L2)))
instead, let's do the simple approach:
flatten cnd => new-cnd cnd-ss
tmp,
cnd-ss
(if (eq? #t new-cnd)
(thn-ss (assign tmp new-thn))
(els-ss (assign tmp new-els)))
(and e1 e2)
same as for 'if'
Aside: implementing 'not' is less straightforward than we thought.
Recommend using xorq.
Tuples, Heap Allocation, and Garbage Collection
-----------------------------------------------
Syntax:
type ::= Integer | Boolean | (Vector type+)
exp ::= ... | (vector exp+) | (vector-ref exp exp) | (vector-set! exp exp exp)
R3 ::= (program exp)
Example:
(let ([v (vector 10 #f)])
(+ (vector-ref v 0)
(if (vector-ref v 1)
0
(let ([_ (vector-set! v 0 32)])
(vector-ref v 0)))))
Interpreter
introduce interp-op
Talk about heap allocation
Updating the passes: (without GC)
* type checking: straightforward
* uniquify and flatten: nothing to do
* select-instructions
(assign lhs (vector es ...))
==>
allocate a chunk of memory
fill it in with es, need new kind of arg: (offset ,addr ,bytes)
(assign lhs (vector-ref vec i))
==>
(movq (offset new-vec (* i 8)) new-lhs)
(assign lhs (vector-set! vec i arg)
==>
(movq new-arg (offset new-vec (* i 8)))
* liveness, assign-homes, print-x86
update to handle (offset ,addr ,bytes)
Lecture 7: Garbage Collection
================================================================================
Tuples (vectors) are represented by a pointer to a continguous chunk
of memory.
Def. A chunk is *garbage* if it is not reachable by the running
program by any path of pointer traversals.
Def. A *live* chunk is reachable by the running program by a pointer
traversal path.
A garbage collector preserves live chunks and deallocates garbage.
Thus, the program will never traverse a dangling pointer into a
deallocated chucnk.
Comment on the connection between garbage collection and type safety.
When does garbage collection happen? Typically during some calls to
the allocation routine.
Basic parts of a GC:
1. Garbage detection
2. Reclaiming garbage for reuse
Garbage detection starts at the *root set*:
* pointers on the stack
* pointers in registers
Reclaimed objects are typically put on a "free list"
that is used for allocation.
Reference Counting
------------------
Each chunk keeps a count of how many pointers to it exist.
The count goes up and down during allocation, assignment, and
during reclamation.
When the count reaches zero, reclaim the chunk and decrement
the count for chunks pointed to by this one. This can trigger
a cascade of reclaimations, e.g., for an entire list or tree.
An *incremental* GC only does a fixed amount of work during each
allocation. This property is important for programs with timing
constraints, such as real-time systems.
Reference counting can be made entirely incremental by cutting off the
reclaimation, instead putting chunks with zero count on a to-reclaim
list.
Problems:
* cycles
* efficiency
but recent research overcomes these problems
"Taking Off the Gloves with Reference Counting Immix"
by Shahriyar et al.
Tracing GC's
------------
* Mark and Sweep
1. Garbage detection: "mark" all reachable chunks via DFS or BFS
2. Reclaiming garbage for reuse: "sweep" all of memory, reclaiming
the chunks that were not marked.
Problems:
* fragmentation
* cost is proportional to the size of the heap
* bad locality of reference
* Mark-Compact
Moves the marked objects so they are contiguous, often
by sliding them down to the next object.
Allocation is just a pointer bump.
* Copying Collectors
Divide the heap into two (or more) semispaces.
Allocation bumps a pointer in one of the spaces.
If there is no room left, stop and copy.
Copy all live chunks to the tospace, updating
the pointers in them to point to the new locations.
Cheney Algorithm:
* Implements BFS
* Queue stored in the tospace, between alloc pointer and
a "scan" pointer.
* Chunks in the queue may have stale pointers.
* Copied objects have forwarding pointers.
Lecture: GC Q&A and Functions
================================================================================
Question:
This code is at the end of the garbage collection code in racket:
(movq (global-value free_ptr) (var t.2))
(addq (int 16) (global-value free_ptr))
(movq (int 131) (offset (var t.2) 0))
At the point where 131 is, I believe this is the tag at the front of
the array. I've seen examples of it having 3, 131, and 160. Is there
an explanation somewhere that I missed that tells us how to calculate
the tag in-context?