-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtest1.py
534 lines (471 loc) · 20.5 KB
/
test1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
import capstone
from capstone import *
from tools import *
initial_stack_pos = 1024 * 1024
x = open("blackcipher.aes", "rb").read()
md = Cs(CS_ARCH_X86, CS_MODE_32)
md.detail = True
#hate this (?)
class RegOp:
type = capstone.xcore.XCORE_OP_REG
def __init__(self, ireg):
self.reg = ireg
class IntOp:
type = capstone.xcore.XCORE_OP_IMM
def __init__(self, ival):
self.imm = ival
def make_int(reg):
return IntOp(reg)
def make_reg(reg):
return RegOp(reg)
def has_int_value(context, stack, operator):
value = fetch_contents(context, stack, operator)
return is_int_value(value)
def get_int_value(context, stack, operator):
contents = fetch_contents(context, stack, operator)
if type(contents) == type(0):
return contents
if contents.type == capstone.xcore.XCORE_OP_IMM:
return contents.imm
raise "doesn't have an int value"
# how to handle sub eax, eax ? here z3 might be good (?)
def do_aritm(context, stack, operations, op1, op2):
(realop, abstractop) = operations
op1v = fetch_contents(context, stack, op1)
op2v = fetch_contents(context, stack, op2)
if not(is_int_value(op1v)):
print("#do_aritm[]] operator 1: %s" % (operator_desc(op1),) )
if not(is_int_value(op2v)):
print("#do_aritm[]] operator 2: %s" % (operator_desc(op2),) )
if is_int_value(op1v) and is_int_value(op2v):
#computable operations branch
val = realop(get_int_value(context, stack, op1), get_int_value(context, stack, op2))
val &= 0xffffffff
#changes z/s/c flags?
if val == 0: #set Z
pass
if val != 0: #clear z
pass
put_contents(context, stack, op1, val)
return "skip"
#gotta resolve the real values
val = abstractop(op1v, op2v)
put_contents(context, stack, op1, val)
print("abstract operation op1 <- " + value_desc(val))
return "skip" #maybe return a stop condition
#operator to
# - reg
# - mem
# - unknown / memslot
# - stack slot (esp bassed)
# - imm
def stack_offset(context, stack, operator):
index = (
0 if operator.mem.index == 0
else
get_int_value(context, stack, make_reg(operator.mem.index)) * operand.mem.scale
)
disp = 0 if operator.mem.disp == 0 else operator.mem.disp
offset = 0 if (index + disp) == 0 else int(index + disp)
return offset
def fetch_contents(context, stack, operator):
if operator.type == capstone.xcore.XCORE_OP_REG:
if context[operator.reg] == None:
raise "invalid contents"
return context[operator.reg]
if operator.type == capstone.xcore.XCORE_OP_IMM:
return operator.imm
if operator.type == capstone.xcore.XCORE_OP_MEM:
if is_valid_stack_ref(context, stack, operator):
offset = stack_offset(context, stack, operator)
current_stack_pos = context[capstone.x86.X86_REG_ESP]
print("#stack[%u, %u] -> " % (current_stack_pos, offset))
if not((current_stack_pos + offset) in stack):
return initial_stack_value(current_stack_pos + offset - initial_stack_pos)
return stack[current_stack_pos + offset]
print("fetch_contents type "+str(operator)+" not proccessed")
return operator
raise "unknown should be a type"
print("fetch_contents type "+str(operator)+" not proccessed")
return operator
def is_valid_stack_ref(context, stack, operator):
#for now ESP + REG * scale + disp
#another option is base + esp * 1 + disp (not handled yet)
valid = (operator.mem.segment == 0) #segment should be 0
valid &= operator.mem.base == capstone.x86.X86_REG_ESP #base should be esp
valid &= (operator.mem.index == 0) or has_int_value(context, stack, make_reg(operator.mem.index))
return valid
#return some operations ?
#operator <- what is a good name for this?
def put_contents(context, stack, operator, value):
#print(str(operator) + " <- " + str(value))
print("#put_contents[%s] <- %s" % (operator_desc(operator), str(value)))
if value == None:
raise "invalid value in put contents"
if operator.type == capstone.x86.X86_OP_REG:
context[operator.reg] = value
return None
if operator.type == capstone.x86.X86_OP_MEM:
if is_valid_stack_ref(context, stack, operator):
offset = stack_offset(context, stack, operator)
current_stack_pos = context[capstone.x86.X86_REG_ESP]
print("#stack[%s, %s] <- " % (str(current_stack_pos), str(offset)))
stack[current_stack_pos + offset] = value
return None
return "is_mem_write"
raise "put_contents type "+str(operator.type)+" not proccessed"
def liftblock(memdata, stack, context, stuff, addresstack, init_address, max_inst):
global blocks
address = init_address
for count in range(0,max_inst): #just not infinite
if address in addresstack:
print("doing address already done")
break
#
#is address valid?
y = md.disasm(memdata[address-0x400000:address-0x400000+100], address)
#
#a fetch one verb should be better, which to use?
i = next(y) #since its a generator, gotta store to play
proccessed_i = None
#
#
#if not(capstone.x86.X86_GRP_JUMP in i.groups):
print("l0x%x:\t%s\t%s" %(address, i.mnemonic, i.op_str.replace(" ptr ", "")))
addresstack.append(address)
inst_address = address
address = address + i.size
#what to do with loops?
if capstone.x86.X86_GRP_CALL in i.groups:
if i.operands[0].type == 2:
if i.operands[0].imm == address:
#if lifting the block
#need to transform to a push(next address)
#context[capstone.x86.X86_REG_ESP] -= 4
#stack[context[capstone.x86.X86_REG_ESP]] = i.operands[0].imm
#handle as push address
print("#junk call")
proccessed_i = "skip"
skip = True
#if constant, fork or follow?
if skip == False:
proccessed_i = "break"
if capstone.x86.X86_GRP_RET in i.groups:
#if static, jump
proccessed_i = "break"
if capstone.x86.X86_GRP_JUMP in i.groups:
skip = False
if i.mnemonic == "jmp":
if i.operands[0].type == 2:
jmpaddress = i.operands[0].imm
if (jmpaddress in addresstack):
if (jmpaddress != init_address):
print("loop was found, are we following a path fork?")
#a loop is detected, split the block
#iterate the list on instructions(stuff)
#find the first occurence of the address
ocur = None
for i in range(0, len(stuff)):
(a,b) = stuff[i]
if a == address:
ocur = i
if ocur != None:
print("ocurrence found in instructions")
#trim the list
stuff = stuff[0:ocur]
#put a jmp to new block at that point
stuff.append((inst_address, Jmp_to_block(jmpaddress)))
#append to blocks
if not(jmpaddress in blocks):
blocks[jmpaddress] = None
#if ocur == None, we are following a path fork
break
else:
skip = True
proccessed_i = "skip"
address = jmpaddress
else:
val = fetch_contents(context, stack, i.operands[0])
print(value_desc(val))
print(value_desc(context[capstone.x86.X86_REG_EAX]))
#raise "jmp to unknoown location"
elif i.operands[0].type == 2:
jmpaddress = i.operands[0].imm
if jmpaddress == address:
print("#junk jump")
proccessed_i = "skip"
skip = True
#simple trick instead of proper graph work:
#when a conditional fork is meet
#run a few instructions (5~10) on each branch
#see if they collide without side effects
else:
print("fork branch")
l = liftblock(memdata, stack.copy(), context.copy(), [], addresstack.copy(), address, 10)
r = liftblock(memdata, stack.copy(), context.copy(), [], addresstack.copy(), i.operands[0].imm, 10)
l = [(a,b) for (a,b) in l if b != "skip"]
r = [(a,b) for (a,b) in r if b != "skip"]
#trim the skips and see if l.first == r.first
(la, l) = next(iter(l), None)
(ra, r) = next(iter(r), None)
print(l)
print(r)
if la == ra:
print("#junk jump")
proccessed_i = "skip"
skip = True
else:
#conditional_jump
if not(jmpaddress in blocks):
blocks[jmpaddress] = None
#need wall flags if
skip = True
proccessed_i = i
#if operand is fixed, add to blocks
#will need the flags
#copy the conditional instruction
#
if not(skip): #lord free us from this if!
# raise "end of the block, unknown jump"
# break
stuff.append((inst_address, i))
proccessed_i = "break"
if proccessed_i == "break":
print("break issued at %x" % (inst_address))
break
if proccessed_i == None:
proccessed_i = i
vproc(stack, context, i, address)
stuff.append((inst_address, proccessed_i))
return stuff
def vproc(stack, context, i, address):
proccessed_i = None
#if esp is abstract, execution failed
if type(i) != capstone.CsInsn:
return proccessed_i
if capstone.x86.X86_GRP_CALL in i.groups:
if i.operands[0].type == 2:
if i.operands[0].imm == address:
#if lifting the block
#need to transform to a push(next address)
context[capstone.x86.X86_REG_ESP] -= 4
stack[context[capstone.x86.X86_REG_ESP]] = address
#handle as push address
proccessed_i = "skip"
if i.mnemonic == "push":
#how does push [esp - 0x10] proc in intel ?
value = fetch_contents(context, stack, i.operands[0])
#ESP = ESP - 4;
context[capstone.x86.X86_REG_ESP] -= 4
current_stack_pos = context[capstone.x86.X86_REG_ESP]
#use put contents for this too
stack[current_stack_pos] = value
proccessed_i = "skip"
if i.mnemonic == "pushfd":
#gotta deduplicate code (?)
#ESP = ESP - 4;
context[capstone.x86.X86_REG_ESP] -= 4
stack[context[capstone.x86.X86_REG_ESP]] = context["flags"]
#SS:ESP = Source //push doubleword
print("# <- " + str(context["flags"]))
proccessed_i = "skip"
if i.mnemonic == "pop":
current_stack_pos = context[capstone.x86.X86_REG_ESP]
value = stack[current_stack_pos]
print("# -> " + str(value))
#ESP = ESP + 4;
context[capstone.x86.X86_REG_ESP] += 4
put_contents(context, stack, i.operands[0], value)
proccessed_i = "skip"
# if i.mnemonic == "lock cmpxchg":
# print("ebp: " + value_desc(context[capstone.x86.X86_REG_EBP]))
# print("ebx: " + value_desc(context[capstone.x86.X86_REG_EBX]))
# print("ecx: " + value_desc(context[capstone.x86.X86_REG_ECX]))
# raise "lock cmpxchg"
if i.mnemonic == "pushal":
context[capstone.x86.X86_REG_ESP] -= 4 * 8
#temp = esp_val
stack[context[capstone.x86.X86_REG_ESP]] = context[capstone.x86.X86_REG_EAX]
stack[context[capstone.x86.X86_REG_ESP]+4] = context[capstone.x86.X86_REG_ECX];
stack[context[capstone.x86.X86_REG_ESP]+8] = context[capstone.x86.X86_REG_EDX];
stack[context[capstone.x86.X86_REG_ESP]+12] = context[capstone.x86.X86_REG_EBX];
stack[context[capstone.x86.X86_REG_ESP]+16] = "crash_if_read, original esp + offset, from pushal"
stack[context[capstone.x86.X86_REG_ESP]+20] = context[capstone.x86.X86_REG_EBP];
stack[context[capstone.x86.X86_REG_ESP]+24] = context[capstone.x86.X86_REG_ESI];
stack[context[capstone.x86.X86_REG_ESP]+28] = context[capstone.x86.X86_REG_EDI];
proccessed_i = "skip"
if i.mnemonic == "popal":
context[capstone.x86.X86_REG_EAX] = stack[context[capstone.x86.X86_REG_ESP]]
context[capstone.x86.X86_REG_ECX] = stack[context[capstone.x86.X86_REG_ESP]+4];
context[capstone.x86.X86_REG_EDX] = stack[context[capstone.x86.X86_REG_ESP]+8];
context[capstone.x86.X86_REG_EBX] = stack[context[capstone.x86.X86_REG_ESP]+12];
#stack[context[capstone.x86.X86_REG_ESP]+16] = "crash_if_read, original esp + offset, from pushal"
#can this instruction be used to rebase the ESP ?
# life is hard!
context[capstone.x86.X86_REG_EBP] = stack[context[capstone.x86.X86_REG_ESP]+20];
context[capstone.x86.X86_REG_ESI] = stack[context[capstone.x86.X86_REG_ESP]+24];
context[capstone.x86.X86_REG_EDI] = stack[context[capstone.x86.X86_REG_ESP]+28];
context[capstone.x86.X86_REG_ESP] += 4 * 8
#temp = esp_val
proccessed_i = "skip"
if i.mnemonic == "mov":
#add a fetch in container function
#add a put in container function
value = fetch_contents(context, stack, i.operands[1])
ret = put_contents(context, stack, i.operands[0], value)
if ret == "is_mem_write":
#if failed, emit a side effect wall for the registers used
print("walling")
proccessed_i = Wall_side_effects(i)
else:
proccessed_i = "skip"
if i.mnemonic == "xchg":
value0 = fetch_contents(context, stack, i.operands[0])
value1 = fetch_contents(context, stack, i.operands[1])
put_contents(context, stack, i.operands[0], value1)
put_contents(context, stack, i.operands[1], value0)
proccessed_i = "skip"
#latter add a map for clearness
if i.mnemonic == "neg":
proccessed_i = do_aritm(context, stack, (aritm_neg, abstract_neg), i.operands[0], make_int(0))
if i.mnemonic == "not":
proccessed_i = do_aritm(context, stack, (aritm_not, abstract_not), i.operands[0], make_int(0))
if i.mnemonic == "inc":
proccessed_i = do_aritm(context, stack, (aritm_add, abstract_add), i.operands[0], make_int(1))
if i.mnemonic == "dec":
proccessed_i = do_aritm(context, stack, (aritm_sub, abstract_sub), i.operands[0], make_int(1))
if i.mnemonic == "add":
proccessed_i = do_aritm(context, stack, (aritm_add, abstract_add), i.operands[0], i.operands[1])
if i.mnemonic == "sub":
proccessed_i = do_aritm(context, stack, (aritm_sub, abstract_sub), i.operands[0], i.operands[1])
if i.mnemonic == "or":
proccessed_i = do_aritm(context, stack, (aritm_or, abstract_or), i.operands[0], i.operands[1])
if i.mnemonic == "xor":
proccessed_i = do_aritm(context, stack, (aritm_xor, abstract_xor), i.operands[0], i.operands[1])
if i.mnemonic == "shr":
proccessed_i = do_aritm(context, stack, (aritm_shr, abstract_shr), i.operands[0], i.operands[1])
if i.mnemonic == "shl":
proccessed_i = do_aritm(context, stack, (aritm_shl, abstract_shl), i.operands[0], i.operands[1])
if i.mnemonic == "and":
proccessed_i = do_aritm(context, stack, (aritm_and, abstract_and), i.operands[0], i.operands[1])
if i.mnemonic == "mul":
#modifies 2 regs at same time
pass
if i.mnemonic == "rtdsc":
pass
return proccessed_i
#would be nice to have the abstract operations on these too :(
#but need to read more about functional python programing
blocks = {}
#what sparse container can use?
import time
t = time.time()
blocks[0x1DBF71A] = None
while True:
#stack = [None] * 2048 * 1024 #maybe initialize a range of initial_stack above esp
stack = {}
context = new_context(initial_stack_pos)
#find a block that is None
block_addr = None
for b in blocks:
if blocks[b] == None:
block_addr = b
break
if block_addr == None:
print("nothing more to lift")
break;
print(";###################################################")
ablock = liftblock(x, stack, context, [], [], block_addr, 100000)
blocks[block_addr] = ablock
def effects(f, context, stack):
esp_diff = context[capstone.x86.X86_REG_ESP] - initial_stack_pos
print("\t;esp diff: %x" % esp_diff, file=f)
if esp_diff != 0:
print("\tadd esp, %d" % esp_diff, file=f)
#trim the stack changes above esp
for i in stack:
if i >= context[capstone.x86.X86_REG_ESP]:
print("\t;%x %s" % (i, value_desc(stack[i])), file=f)
print("\tmov [esp + 0x%x], %s" % (i - context[capstone.x86.X86_REG_ESP], value_desc(stack[i])), file=f)
else:
print("\t;%x %s" % (i, value_desc(stack[i])), file=f)
for reg in context:
name = str(reg) if not(reg in reg_names) else reg_names[reg]
if reg == "flags":
continue
if reg == capstone.x86.X86_REG_ESP:
continue
if type(context[reg]) == InitialReg:
if context[reg].reg == reg:
continue
print("\t" + name + " = " + value_desc(context[reg]), file=f)
def compile_block(f, block):
stack = {}
context = new_context(initial_stack_pos)
for inst in block:
if type(inst) is tuple:
(address,b) = inst
if b != "skip":
proccessed_i = vproc(stack, context, b, address)
if proccessed_i != None:
b = proccessed_i
if b == None:
raise "wtf none? %x" % address
if type(b) is capstone.CsInsn:
effects(f, context, stack)
print("\t;%x" % address + " " + str(b), file=f)
print("\t" + b.mnemonic, b.op_str.replace(" ptr ", ""), file=f)
elif b != "skip":
print("\t;%x" % address + " " + str(b), file=f)
else:
effects(f, context, stack)
print("\t" + inst.compile_to_asm(), file=f)
#b = inst
f = open("out.asm", "w")
for block in blocks:
print("block %x" % block)
print("block_%x:" % block, file=f)
compile_block(f, blocks[block])
f.close()
#print(ablock)
#ablock = liftblock(x, 0x098B6B4)
#print(ablock)
print(time.time() - t)
#tracestuff(x, 0x1DBF71A)
# expected output so far
# eax 0xf7f88d88 -134705784
# ecx 0xa40319cb -1543300661
# edx 0xffffda74 -9612
# ebx 0x0 0
# esp 0xffffda40 0xffffda40
# ebp 0x0 0x0
# esi 0xf7f86e24 -134713820
# edi 0xf7f86e24 -134713820
# eip 0x56556280 0x56556280 <__libc_csu_init>
# eflags 0x292 [ AF SF IF ]
# cs 0x23 35
# ss 0x2b 43
# ds 0x2b 43
# es 0x2b 43
# fs 0x0 0
# gs 0x63 99
# stack: 0x00000346 0x0000037d 0x019b7157
"""todo:
so gotta make sure loops are processed once
but for now any conditional branch will stop the script
"""
"""
nasm -f elf32 res.asm
gcc -m32 res.o -o res
"""
#options
#serialize the state up to here and append the instructions
# which is pretty easy
#lift SSA, chain of dependency
#starts feeling like i need IL,
# which is beyond the scope of the tut :P
#for the current pos, xor(a,b b,a a,b)
# can read the full block and prefilter these to a xchg
# back to the need of an IL :P
# the transformation to that xchg isn't clean with
# the way the captone bindings are written