Skip to content

Latest commit

 

History

History
172 lines (129 loc) · 5.85 KB

README.md

File metadata and controls

172 lines (129 loc) · 5.85 KB

Upscale-A-Video:
Temporal-Consistent Diffusion Model for Real-World Video Super-Resolution

S-Lab, Nanyang Technological University
CVPR 2024 (Highlight)

Upscale-A-Video is a diffusion-based model that upscales videos by taking the low-resolution video and text prompts as inputs.

📖 For more visual results, go checkout our project page


🔥 Update

  • [2024.09] Inference code is released.
  • [2024.02] YouHQ dataset is made publicly available.
  • [2023.12] This repo is created.

🎬 Overview

overall_structure

🔧 Dependencies and Installation

  1. Clone Repo

    git clone https://github.com/sczhou/Upscale-A-Video.git
    cd Upscale-A-Video
  2. Create Conda Environment and Install Dependencies

    # create new conda env
    conda create -n UAV python=3.9 -y
    conda activate UAV
    
    # install python dependencies
    pip install -r requirements.txt
  3. Download Models

    (a) Download pretrained models and configs from Google Drive and put them under the pretrained_models/upscale_a_video folder.

    The pretrained_models directory structure should be arranged as:

    ├── pretrained_models
    │   ├── upscale_a_video
    │   │   ├── low_res_scheduler
    │   │       ├── ...
    │   │   ├── propagator
    │   │       ├── ...
    │   │   ├── scheduler
    │   │       ├── ...
    │   │   ├── text_encoder
    │   │       ├── ...
    │   │   ├── tokenizer
    │   │       ├── ...
    │   │   ├── unet
    │   │       ├── ...
    │   │   ├── vae
    │   │       ├── ...
    

    (a) (Optional) LLaVA can be downloaded automatically when set --use_llava to True, for users with access to huggingface.

☕️ Quick Inference

The --input_path can be either the path to a single video or a folder containing multiple videos.

We provide several examples in the inputs folder. Run the following commands to try it out:

## AIGC videos
python inference_upscale_a_video.py \
-i ./inputs/aigc_1.mp4 -o ./results -n 150 -g 6 -s 30 -p 24,26,28

python inference_upscale_a_video.py \
-i ./inputs/aigc_2.mp4 -o ./results -n 150 -g 6 -s 30 -p 24,26,28

python inference_upscale_a_video.py \
-i ./inputs/aigc_3.mp4 -o ./results -n 150 -g 6 -s 30 -p 20,22,24
## old videos/movies/animations 
python inference_upscale_a_video.py \
-i ./inputs/old_video_1.mp4 -o ./results -n 150 -g 9 -s 30

python inference_upscale_a_video.py \
-i ./inputs/old_movie_1.mp4 -o ./results -n 100 -g 5 -s 20 -p 17,18,19

python inference_upscale_a_video.py \
-i ./inputs/old_movie_2.mp4 -o ./results -n 120 -g 6 -s 30 -p 8,10,12

python inference_upscale_a_video.py \
-i ./inputs/old_animation_1.mp4 -o ./results -n 120 -g 6 -s 20 --use_video_vae

If you notice any color discrepancies between the output and the input, you can set --color_fix to "AdaIn" or "Wavelet". By default, it is set to "None".

🎞️ YouHQ Dataset

The datasets are hosted on Google Drive

Dataset Link Description
YouHQ-Train Google Drive 38,576 videos for training, each of which has around 32 frames.
YouHQ40-Test Google Drive 40 video clips for evaluation, each of which has around 32 frames.

📑 Citation

If you find our repo useful for your research, please consider citing our paper:

@inproceedings{zhou2024upscaleavideo,
   title={{Upscale-A-Video}: Temporal-Consistent Diffusion Model for Real-World Video Super-Resolution},
   author={Zhou, Shangchen and Yang, Peiqing and Wang, Jianyi and Luo, Yihang and Loy, Chen Change},
   booktitle={CVPR},
   year={2024}
}

📝 License

This project is licensed under NTU S-Lab License 1.0. Redistribution and use should follow this license.

📧 Contact

If you have any questions, please feel free to reach us at [email protected] or [email protected].