-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtest_linexpr.cpp
63 lines (55 loc) · 1.66 KB
/
test_linexpr.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
#include <boost/test/unit_test.hpp>
#include "scippp/model.hpp"
#include "scippp/solving_statistics.hpp"
using namespace scippp;
using namespace std;
BOOST_AUTO_TEST_SUITE(LinExpression)
BOOST_AUTO_TEST_CASE(AddOneVar)
{
Model model("Simple");
array coeff { 1, 1 };
const auto& [x1, x2] = model.addVars<2>("x_", coeff);
LinExpr l;
l += x1; // allocates memory, thus slow
l += x2; // allocates memory again, thus slow
model.addConstr(l <= 1, "capacity");
model.setObjsense(Sense::MAXIMIZE);
model.solve();
BOOST_TEST(model.getSolvingStatistic(statistics::PRIMALBOUND) == 1);
}
BOOST_AUTO_TEST_CASE(CtorArray)
{
Model model("Simple");
array coeff { 1, 1 };
const auto VARS = model.addVars<2>("x_", coeff);
LinExpr l(VARS);
model.addConstr(l <= 1, "capacity");
model.setObjsense(Sense::MAXIMIZE);
model.solve();
BOOST_TEST(model.getSolvingStatistic(statistics::PRIMALBOUND) == 1);
}
BOOST_AUTO_TEST_CASE(AddArray)
{
Model model("Simple");
array coeff { 1, 1 };
const auto VARS = model.addVars<2>("x_", coeff);
LinExpr l;
l += VARS;
model.addConstr(l <= 1, "capacity");
model.setObjsense(Sense::MAXIMIZE);
model.solve();
BOOST_TEST(model.getSolvingStatistic(statistics::PRIMALBOUND) == 1);
}
BOOST_AUTO_TEST_CASE(AddInitializerList)
{
Model model("Simple");
array coeff { 1, 1 };
const auto& [x1, x2] = model.addVars<2>("x_", coeff);
LinExpr l;
l += {x1, x2};
model.addConstr(l <= 1, "capacity");
model.setObjsense(Sense::MAXIMIZE);
model.solve();
BOOST_TEST(model.getSolvingStatistic(statistics::PRIMALBOUND) == 1);
}
BOOST_AUTO_TEST_SUITE_END()