diff --git a/imblearn/over_sampling/_random_over_sampler.py b/imblearn/over_sampling/_random_over_sampler.py index 6ac116305..986be422a 100644 --- a/imblearn/over_sampling/_random_over_sampler.py +++ b/imblearn/over_sampling/_random_over_sampler.py @@ -241,10 +241,7 @@ def _fit_resample(self, X, y): self.sample_indices_ = np.array(sample_indices) - if sparse.issparse(X): - X_resampled = sparse.vstack(X_resampled, format=X.format) - else: - X_resampled = np.vstack(X_resampled) + X_resampled = np.vstack(X_resampled) y_resampled = np.hstack(y_resampled) return X_resampled, y_resampled diff --git a/imblearn/under_sampling/_prototype_selection/_random_under_sampler.py b/imblearn/under_sampling/_prototype_selection/_random_under_sampler.py index 6696069c3..03fe71202 100644 --- a/imblearn/under_sampling/_prototype_selection/_random_under_sampler.py +++ b/imblearn/under_sampling/_prototype_selection/_random_under_sampler.py @@ -112,7 +112,7 @@ def _fit_resample(self, X, y): if target_class in self.sampling_strategy_.keys(): n_samples = self.sampling_strategy_[target_class] index_target_class = random_state.choice( - range(np.count_nonzero(y == target_class)), + range(np.count_nonzero(y != target_class)), size=n_samples, replace=self.replacement, ) @@ -122,7 +122,7 @@ def _fit_resample(self, X, y): idx_under = np.concatenate( ( idx_under, - np.flatnonzero(y == target_class)[index_target_class], + np.flatnonzero(y != target_class)[index_target_class], ), axis=0, )