Synchronization And Other LSL
Topics

Christian A Kothe, CTO
Tim Mullen, CEO

@ intheon

Outline

1. Time Synchronization
2. Diagnosing Connectivity Issues
3. More Notes on Metadata

1 Time Synchronization

LSL Time-Synchronization Basics

Every sample in LSL has its own time stamp

LSL mainly transports time stamps, but
doesn’t “tamper” with them

LSL tracks clock drift across machines and
when recording to XDF, that info is stored

Real-time time synchronization is also
available

The Life of A Timestamp

©-s

PC Clock

1. Stamp is
taken on PC
where event
(e.g., sample)
was observed

LSL

2. Stamp is
transported via
LSL

TN

TS

3. Stamp is
recorded together

with clock-sync
information

& dwil

®

LSL's Built-In Peer-To-Peer Time

Synchronization
[Program A \liblsl
J
[Program A JblSI °O

RTT = (t3-t0)-(t2-t1)
OFS = ((t1-t0)+(t2-t3))/2

<-t0

<-t1

<-t2

<-t3

LSL's Built-In Peer-To-Peer Time

Synchronization
N\
[Program A liblsl <-t0
J
QU@,.
% (Program B]
liblsl -1l
— . <
3 .
® libls|
d e
NS
[Program A ol o <-13
) 0

RTT = (t3-t0)-(t2-t1)
OFS = ((t1-t0)+(t2-t3))/2

®

Providing Your Own Timestamps

* An LSL data source can provide its own (or modified)

timestamps -- otherwise LSL will stamp it at the time
of data submission

we happen to know that our sample was actually
measured 25ms ago by our device

stamp = local clock() - 0.025
outlet.push_sample(mysample, stamp)

Performing Online Time Sync

* As a data recipient, you can ask LSL about the current clock
offset for the received data

* Adding that number to the received raw timestamps

(measured on the remote clock) remaps them to your own PC
clock

* |If you do that for all received streams, they’re all on the same
clock (yours) -- i.e., synchronized

get the next sample and its timestamp

sample, timestamp = inlet.pull sample()

manually correct the time stamp that we just got
offset = inlet.time_correction()

timestamp += offset

Online Time Sync, Simplified

* An even simpler option is to enable automatic

time correction upon receiving the data to
have LSL do this for you

inlet.set postprocessing(proc_clocksync)

Offline (Post-Hoc) Time Sync

The preferred method for time-sync of
recorded data is post-hoc correction (at load
time) rather than online sync -- this way, the
original time stamps are preserved

Clock drift over entire experiment is estimated
from collected clock-sync info in XDF file, and
subtracted

MATLAB & Python XDF importers do this for
you (can be disabled if not desired)

Sources of Device Timing Error

* Clock Drift
* Internal Device Latency
* Time-stamp lJitter

Per-Device Latency

Most acquisition devices (or driver) have internal
latency (0.1-100ms)

Single-sample latency of a device can vary
significantly but average latency in a recording
tends to depend only on setup parameters
(hardware, drivers, settings)

True latency of a device can be measured once
per device setup (e.g., per study / per lab / under
factory settings)

Every acquisition program has a default assumed
latency (many assume Oms)

Pure Software Techniques for
Device Latency Measurement

Unknown latencies between devices can be
estimated using cross-correlation (xcorr in
MATLAB) if signals exhibit correlated features

Example: photo diode vs. on/off event markers

Can use CCA to do the same for multi-channel
signals (e.g., eye tracker vs. EEG)

Recommendation: when doing this analysis,
always check consistency of estimated delays
over time (e.g., 5-minute stretches) and across
sessions

Pure Software Techniques for Device
Latency Measurement
* Correlation analysis should yield a clear

“spike” at the shift that yields maximum
correlation between two signals

0.25 1

0.20

0.15 -

0.10 4

0.05 -

T T T T T T
0 20 40 60 80 100

HW-Assisted Device Synchronization

* Can use off-the-shelf hardware to test out
latencies of devices and/or emit sync data
during experiments

neurobehavioralsystems

* Can use generic DAQ cards and custom
@ hardware solutions to measure latency

Time-Stamp Jitter

* Time-of-arrival of data in PC software is noisy, and so
are the raw time stamps

e But actual measurements are typically* regular

e Can “smooth” (linearize) jittery time stamps to
estimate the unobserved actual time stamps

 XDF Importers will do this for you post-hoc by default
(can be disabled and done manually or skipped)

e LSL can alsodoitin real time:

inlet.set postprocessing(proc_dejitter)

@ *: see David Medine’s Lecture

The Good News

* Time-stamp errors can be decomposed into
The error components (latency + jitter + clock

drift) can be separately measured and
corrected for

* Odd cases (e.g., non-constant latency,
irregular sampling rates, non-linear drift) can
occur, and can usually be fixed (if detected)*

e Recommendation: perform pilot run and
Actually Look At™ pilot data

@ *. Also see David Medine’s Talk

Synchronization In Practice

* Approach 1:

— Measure device latencies at least once (using trigger cables or a
custom timing test experiment) and confirm that variability is
acceptable

— Re-measure after every significant setup change (e.g., driver
update, OS/hardware change)

* Approach 2:
— Rely on LSL time synchronization
— Also record trigger channels as backup (possibly correct device
latencies post-hoc)
* Approach 3:

— Rely on trigger cables in every experiment and perform
synchronization based on trigger information

— Use LSL time-stamps as “safety net” when trigger sync fails
(measure device latencies post-hoc)

®

2 Diagnosing Connectivity Issues

Something Doesn’t Connect,
What Now?

Possible reason: Firewall

Most likely reason is the OS firewall on either
the sending or receiving machine

Try to disable firewall and see if that resolves
the issue — if yes, can try to re-enable more
fine-grained application rules

See also wiki article on “Network
Connectivity”

Something Doesn’t Connect,
What Now?

 Possible reason: Additional Network Cards

e Current version of LSL only transmits over the
primary network card

* Some software installs additionl “virtual”
network hardware (e.g., Docker, Microsoft
Hyper-V, Oracle VirtualBox) which can
interfere with LSL — try temporarily disabling
additional network adapters

Something Doesn’t Connect,
What Now?

Possible reason: WiFi router blocks p2p packets

Some WiFi routers in public spaces (e.g., campus/hotel
networks) are configured to explicitly disallow packets
commonly used for peer-to-peer service discovery
(broadcast/multicast packets)

To troubleshoot, try same applications on different (e.g.,
wired or home router) network — if they work, the network
policy is likely the issue

Note: some bad routers may seemingly randomly let some
applications through and not others

On these networks, machines do not see each other —only
workaround is to set KnownPeers variable in config file
(explicit list of IP addresses or hostnames)

Something Doesn’t Connect,
What Now?

* Possible reason: Using wrong stream
name/type/etc.

* Make sure that the stream that you’re
transmitting really has the name and/or type
that you expect, including capitalization (e.g.,
check in LabRecorder)

Something Doesn’t Connect,
What Now?

Possible reason: Non-default session id used
Every LSL application looks for a config file

If present, that config file can override settings,
including the “session id”

Only LSL applications that have the same session id can
see each other — by default it is “default”, and unless
you change it, any LSL application can see any stream

Purpose is to allow for multiple recording activities that
are sandboxed from each other

However, easy to set a config file and later forget...

Troubleshooting Tools

* LSL comes with simple command-line applications that
send and/or receive simple streams (e.g.,
SendStringMarkers/ReceiveStringMarkers,
SendData/ReceiveData)

e |f unsure whether the bug is in your application, can
check if these tools can or cannot transmit —on a
properly configured machine, these tools should
always be able to transmit

e Another useful tool resolves all streams visible on the
network and shows their exact metadata
(GetAllStreams)

3 More Notes on Metadata

Why Set Metadata On Your Streams?

LSL can handle any amount of per-stream
metadata

If added to a stream, metadata will be
recorded to XDF files

Available for later analysis

Impossible to lose (compared to separate
notes/files/etc)

How to Set Metadata?

When declaring a stream (stream info object),
metadata can be added using the .desc() field

% create a new StreamInfo and declare some meta-data (in accordance with XDF format)
info = 1sl streaminfo(lib, 'MetaTester’', 'EEG',8,100, 'cf_float32', 'myuid56872');

chns

info.desc().append_child('channels');

for label = {'C3','C4','Cz','FPz','POz','CPz','01",'02"}
ch = chns.append_child('channel');
ch.append_child_value('label’,label{1});
ch.append_child value('unit', 'microvolts’);
ch.append_child_value('type', 'EEG");

end

info.desc().append_child_value('manufacturer', 'SCCN');

cap = info.desc().append_child('cap');

cap.append_child value('name’, 'EasyCap');

cap.append_child_value('size','54");

cap.append_child_value('labelscheme', '10-20");

What To Set?

e Stimulus presentation program

— Configuration settings of the session/run (can also
write as event marker), random seed, sizes of
stimuli, etc.

— For time series (e.g., on-screen trajectories):
channel names, channel unit (e.g.,
pixels/normalized/...)

* Device/sensor application

— Channel labels etc., information about device
(model, manufacturer, serial no., etc)

®

Thanks! ©

Q&A until 5pm

