The Lab Streaming Layer —
Introduction and Overview

Christian A Kothe, CTO
Tim Mullen, CEO

@ intheon

The Birthplace of LSL (SCCN)

o
7
O
>
O
7]
o
7

The Birthplace of LSL (SCCN)

Seed Funding from CaN CTA

dw ARL

COLUMBIA
UNIVERSITY

MICHIGAN

Universitat
llpf Pompeu Fabra
Barcelona

Additional government funding sources

n National Institute of
Neurological Disorders
and Stroke

Office of Naval Research

LSL Has Come a Long Way!

* Large & Growing Userbase
— 19000 lecture views on YouTube as of today

— 130 GitHub forks, 240 stars, 5000 Google results
— Workshops, Hackathons, Online Community, ...

* Broad Hardware support
— Many dozen devices across many vendors

* Used in all sorts of places (e.g., NASA)

®

A W N R

Outline

. Why LSL?

. What is LSL?
Using LSL

. The LSL Ecosystem
. Q&A

1 Why LSL?

Issues Addressed by LSL Pt 1

Format mess
— Lots of file formats and importer & conversion functions
— Custom scripts needed to read/write extra files
— Missing or unreadable meta-data (e.g., channel labels)

Complex hardware time synchronization...

— A lot of custom hardware and cabling needed for
synchronization (e.g., sync boxes, adapters, creative wiring)

— Easy to make mistakes at data collection time
— Lengthy setup and pilot testing stages

... or brittle and wacky post-hoc synchronization

— E.g., compare file times for different simultaneous recordings
— Or find and match peaks in different signals

Issues Addressed by LSL Pt 2

Error prone data collection

— chance of failure increases with # of devices, computers,
programs and data files involved

— should be able to reconnect (or hot-swap) a device during
experiment

No unified tools for recording, viewing, etc
— No centralized viewing / recording across devices
— Limited to no support for viewing data from custom devices
Every vendor has a different interface (or none)
— custom code for each device needed (sometimes driver-level)
— high development cost for online experiment scripts
— online time-sync challenging
Not very easy to get data out of most hardware
— often need to know a specific programming language (e.g., C++)
@ — often little documentation and obscure, rarely-used interfaces

2 What is LSL?

LSL Is A Unified Data Collection

Interface

Stimulus
Presentation

liblsl

Misc Devices (e.g.,
PhaseSpace)

{

Online
Processing

r—-———-"-"—--—--—=-"—-——— m TPt 1
EEG Hardware (e.g., | | (Real-Time I
BioSemi, MINDO) I I libls| Viewers I

libls| | | I
I Oc?’Q I
% X I
2 N (]
Maf/r@rs Lab MEEZ libls| R;cordmg] I
_ rogram |
Steaming \ |
L £EG+o
2 ayer £ ther |
2 o) :
N\O ntI'O/S/ na/S libls| I
I
I
I
I
I

LSL Can Be Easily Integrated Into
Programs

T lNStanciate Ths 110Drary

lib = 1=l loadlib():

f make a2 new stream outlet (name: Biol
[] IT

emi
info = 1=s1 streaminfo(lib, 'BicSemi’, EG',8,100,"'ct float3d', 'myuid');
outlet = 1l=1 outlet (info):;

while true
outlet.push sample (randni(8,1)):
pause (0.01) ;

end

Sample code for sending 8ch EEG (MATLAB)

LSL Can Be Easily Integrated Into
Programs

lib = 1s1 loadlib{();

T try resolve an EEG =stream
result = {}:
while isempty(result)
result = 1l=21 resolve byprop(lib, "type', '"EEG"); end
¥ create a new inlet from the first result

inlet = 1l=21 inlet(result{l});

while true
% get data from the inlet and print it
[vec,ts] = inlet.pull sample():;
fprintf('%.2f\t',vec); fprintf('%.5f\n',ts):
end

Sample code for receiving EEG data (MATLAB)

LSL Can Scale to Complex Experiments

* Acquiring data from multi-modal and multi-
vendor brain- and bio-signals

EEG and ExG

Full-Body Motion
Capture

Eye-Tracking

Human Interface

Devices, System

State, Etc.

LSL Can Scale to Complex Experiments

STRUM: Small-Team Reconnaissance Urban Missions

LSL Can Scale to Complex Experiments

May require online access to multiple device
streams from one experiment script

The LSL Software Stack

* The core piece of LSL is a network protocol, a
library, and various language interfaces for it

C/C++ Python MATLAB Java Other
Header Wrapper | Wrapper | Wrapper Languages

LSL Application Programming Interface (API)

Library (liblsl), cross-platform (C++)

4 l
@W‘

®

The liblsl Library

Cross-platform C++ library (compiles out-of-the-box for
Windows, Mac OS, Linux, Android, 32/64 bit) , IPv4/6

Stable API (no breaking change since 1y / 1%t release)
Extensive documentation and example code
High code quality / very few bugs

Low-overhead implementation (memory, 10, threads,
complexity, ...), low binary footprint

Mame | Type | Size | Date modified |
| KinectMocap.exe Application 27KB 1/23/2013 5:04PM
%) liblsl32.dll Application extension 723KB 1/23/2013 5:04 PM
\%| Microsoft.Kinect.dll Application extension 112KB 1232013 5:04PM

Folder structure of a simple application that supports LSL

The LSL Software Distribution

* The larger distribution includes
Documentation, User Guides, Example
Programs, Acquisition Programs, Generic Tools

* Everything open source (mostly MIT-licensed)

Generic
Viewers,

Acquisition Programs (EEG, Eye

tracking, Human Interfaces, HEIIRIE IKI

Programs Documentation
Recorder

Motion Capture, Multimedia)

—————————————————————————————

’

{ Core Components

o T -

Some EEG Solutions Supported by LSL

LSL supports 30+ EEG systems and over 20 other device classes

Research grade Consumer oriented

* JBRAIN PRODUCTS Q-

WEARABLE ::

o
GUGER S 'J]BW’
TECHNOLOGIES
oni 1 UNITED
MCognionics SCIENCES

ray EEG

-~
77

Interaxon
NeuroSky
.‘ \ . :
I
neuroelectrics ® N/ st s e
256 128 64 32 16 4 1

High Channel Density Low

Some Other Device Types on LSL

Eye Trackers

Motion Capture

Game Controllers

Mice, Keyboards

Serial Port

Soundcards & (some) frame grabber cards
Wearable EMG/ECG devices

Some LSL-Compatible Stimulus
Presentation Software

T —— EventIDE
Presentation =]
..... I — = |
o (== |
=
Unity (with plugin) PsychoPy

PsychToolbox

Currently-unmaintained integrations: SNAP, Unreal

Design Tradeoffs

* Designed for “lab-scale” recording operations:
— Local: use VPN/broker/bridges to scale across the internet

— Up to 20 streams per computer fine, 30-100 considered heavy
load, likely needs high-end hardware beyond 100 streams
(limited by # of USB ports, etc.)

— Up to 10 computers involved per recording fine, >20 considered
excessive, likely requires high-end networking equipment
beyond 50 computers

* Designed for “human-scale” operating range:
— Not a perfect fit for high-energy physics
— Sub-milisecond time synchronization out of the box

— Microsecond precision can only be achieved with user-supplied
(e.g., GPS/PTP) time stamps

— Latency <1ms, throughput up to 2MHz and 100MB/s (raw video)

®

3 Using LSL

(Quick Demo)

A Typical Experiment Setup with LSL

 “Record data from 2 devices while running a
custom stimulus presentation script”

e Software needed for recording
— Your experiment script (sends event markers)
— Vendor A Application (e.g., sends EEG)
— Vendor B Application (e.g., sends MoCap data)
— Recording Program (LabRecorder)

A Typical Experimenter Workflow

1. Start EEG & MoCap apps, turn on LSL streaming if needed
BL{‘:' J Use AUX Lnanneis 1 anecx)
Oz Enable Active Shield [V (check)
02

PO10 v @| |

/

2. Start experiment script in ready mode

PRESS STRRI

3. Open LabRecorder, confirm all LSL streams are there, and
then click “Start”

Recording Control Storage Location
Stop C:\Recordings\Curren

Record from Streams

BioSemi

PhaseSpace
SNAP-Markers

Coding with LSL: Event Markers

| import random
| import time

I
| from pylsl import StreamInfo, StreamOutlet

declare your marker stream information

I info = StreamInfo('MyMarkerStream', 'Markers', 1, 0, 'string', ‘myuniqueid2345')
I # create an outlet, now the stream 1s visible
: outlet = StreamOutlet(info)

| while True:

| # send an event marker

I outlet.push_sample(["Some Event Marker"])
| # do something else

I time.sleep(random.random()*3)

Example Code for sending event markers over LSL (Python)

Coding with LSL: Sending Time Series

import time
from random import random as rand

: from pylsl import StreamInfo, StreamOutlet

create stream info

l info = StreamInfo('BioSemi', 'EEG', 8, 100, 'float32', 'myuid34234")

create an outlet
outlet = StreamOutlet(info)

| while True:

make a new random 8-channel sample and send it

mysample = [rand(), rand(), rand(), rand(), rand(), rand(), rand(), rand()]
outlet.push_sample(mysample)

wait for a bit until we send the next sample

time.sleep(0.01)

Example Code for sending a multi-channel time series over LSL (Python)

Coding with LSL: Receving Time Series

I from pylsl import StreamInlet, resolve_stream
I
| # we wait until we find a stream with type EEG on the lab network... (or
| more than one)

| streams = resolve_stream('type', "'EEG')

inlet = StreamInlet(streams[@0])

wait to get the next sample, also get its timestamp
sample, timestamp = inlet.pull sample()
print(timestamp, sample)

Example Code for receiving a multi-channel time series over LSL (Python)

|
|
|
|
|
I # now that we have 1it, we create an inlet to read from it :
I I
I while True: |
I I
I I
I I

Some Facts Worth Knowing

* LSL doesn’t reorder samples — the data you get out on the other side is always
in-order

* LSL doesn’t spuriously drop or lose samples (unless the network connection is
interrupted for a long time, default 5 min.)

* For LSL, it’s all just samples: one program can send whole chunks at a time,
and the other side can read it sample-by-sample, or vice versa

Samples 1...k
Metadata
M | [| |[x i

<?’xrrl version="1.8"2> IW IW IW E
<info>»

<name>BioSemi</name> + 5 5 see 5

<type>EEGL/type>

<channel_count>8</ch Im m IV—nI

<nominal_srate>108</

Frhomna]l foapmatsfln tS tS tS ts

* When a program first starts reading from a stream, it will begin reading from
the stream’s next submitted sample onward (e.g., from sample #10053 on)

Some Facts Worth Knowing

You can add any amount of meta-data to a stream, and for posterity’s
sake, you should:

info = StreamInfo('BioSemi’', 'EEG', 8, 100, 'float32', 'myuid2424'")

add some meta-data (follow the spec at https://github.com/sccn/xdf/wiki/Meta-Data)
info.desc().append_child("reference").append_child value("label"”, "Nasion")

add some more meta-data

channels = info.desc().append_child("channels")

for c in ["C3", "ca", "cz", "FPz", "POz", "CPz", "01", "02"]:
chan = channels.append_child("channel™)
chan.append_child value("name", c)
chan.append_child value("unit", "microvolts")
chan.append_child value("type", "EEG")

For best compatibility, LSL apps should adhere to the meta-data
conventions set forth by the XDF (Extensible Data Format) project,
which can be found at: https://github.com/sccn/xdf/wiki/Meta-Data

https://github.com/sccn/xdf/wiki/Meta-Data

®

Fault Tolerance with Capital “F”

Can turn off/on individual devices while recording
continues; real-time processing can wait, ignore & warn, or
throw error if desired

Can unplug (and replace) network equipment while
recording continues (data is buffered up to several minutes)

Can restart computers with multiple devices while
recording continues

Can hot-swap computers (and devices under some
circumstances) while recording continues

Can have second backup recording machine

Caveat: Need unique device/source IDs to handle duplicate
streams (e.g., serial numbers or custom-assigned numbers)

info = StreamInfo('BioSemi', 'EEG', 8, 100, 'float32', 'myuid34234')

Ideally unique to your device/data source

Useful Tools: LabRecorder

File Help

Recording Control Storage Location

Start Stof C:\Recordings\CurrentStudy\exp%oniuntited. xdf Browse...

Record from Streams Position within Study

BioSemi Experiment number 18 =
PhaseSpace
SNAP-Markers

Current experiment block

default

[] Enable scripted actions

The LabRecorder can record any number of LSL
streams simultaneously into a single file (XDF)

Useful Tools: Viewers

. v
OB0-~B/7@PAM=Eaqaq

o A

| (2) Band pass filtered signal (8 to 10 Hz, FIR)

(5) System waits
/| and triggers event
exactly at PI/2 in
original 10 Hz
oscillation.

7

| (3) System identified phase |

PRy Sy " /
Y At g e ™ ey e

"

\ | (4) System predicts phase into future "‘J« ‘

| (1) Unfiltered signal (10 Hz + noise) |

) Figure 1: LSL:Stream'MyStream’ oy [=]]
File Edit View Insert Tools Desktop Window Help ¥
OEdS [KRN NDEL- 208 |nD
MyStream "R
Ch8 aug
Ch7
Ch6 7
Chs
N N L el R T M LN R N ;
v
on2 Sy I e s P R AL A b oty
ot A M e oA IR, A Lt A R
L L L 1 L L L 1 L 1
208 206.5 207 207.5 208 208.5 209 209.5 210 2106
MATLAB Viewer (included)
I $ Y
TP9-3391 M pag ¥ N / I - V| oo WA A A A S ~—,~—~,«‘.ym\

AF7-483 -
AFB-922 At M A ANV AW It AP A AR e r s s
TP10 - 3166

Right AUX - 29 87

MuselLSL Viewer

SigViewer (offline)

?

Your Viewer Here?

Useful Tools: Real-Time Processing

{priy

Connectivity

®
—

~y Custom LSL Data L] Data mmw_
& \'\:\ s
Q Diagnostics
an : LSL Input FIR Filter
88 ciomentuie ot oo [e
Feature Extraction W7 Time series view - o X
X4 | File System
[| Formatting
{2} | Machine Learning
£ Network
LSL LSL 0sC TCP
3 L L k2
L5L Input Ot%ut Oﬁiﬁ:ut TCP Input
TCP
L
TCP \ | Outpy
INF
INF
INF
INF

—

NeuroPype Academic Edition

Useful Tools: Real-Time Processing

Eile Edit Help Window

IEEELER AR EAR
£ scenarioLaml 38 £ » testioml * 38 |

,%? | Channel 0

Channel 1

Channel 2

¥ Show unstable

Channel 3|---—----~---=-"="-"“-"““"-““““““ - tion .
Channel 4
-
WY Chamnel 5|__ N a confusion matrix out:

Channel &

I‘-'Iatr'lx\bisplav Univa I‘_Iati\‘_lll Statistics
L A A A a2
W
D i
S
W

5

Channel 7
brm & quadratic matrix of

Channel 8

Channel § s M inputs to N outputs b

IChannel 10
plexes streamed matrix t

-- ks if @ matrix contains

udly Matr Display a streamed matrix
L= [Presentation

- |E| P300 Magic Card Visualisation Presents a matrix of images t

- -
| | > | | »
b @ 9 Messages
System load : [4.9% @

/

OpenViBE

Useful Tools: Command-Line Utils

LSL comes with small utilities out of the box
Can quickly diagnose network issues etc.

E.g., FindAllStreams, ReceiveData,
SendData, ReceiveStringMarkers,
SendStringMarkers

Generally available for all platforms

5 The XDF File Format

XDF File Format

* Developed with Clemens Brunner (Graz Univ.)

* Independent of LSL, but supports full feature
set (and comes with importers for MATLAB,
EEGLAB, BCILAB, MoBILAB, Python)

* Very simple (ca. 100 LoC parser) modern
container file format supporting:
— Any number of streams, time-synched

— Extensible meta-data per stream with core subset
specified online (https://github.com/sccn/xdf)

®

https://github.com/sccn/xdf

XDF Extensible Meta-Data

A portion of the MoCap meta-data specs:

<channels=

zchannel=
<label=
amarker>
<ohject»
<typesx

<Rt
</ channel=
</channels>

cacquisitions
amanufacturers>
=mode]=
<zettings»

< settings=
<compensated_lag=

<facquisition=

<setup=
< Ame=

<hbounds=
<7 11 ML

K

Y

f
</ N mum=
AN T ML

K

Y

HeOHH R B R H H H H

HoH K R

HH

specification of the channel Tlayout

information about a single channel (repeated for each)

Tabel of the channel

label of the marker that this channel refers to, 1f any

label of the object that this channel refers to, if any

type of data in this channel, can be an of the following values:
* PositionX, Position¥, PositionZ for euclidean position (strongly preferred unit: meters),
* Qrientationd, OrientationB, OrientationC, OrientationD for quaternion-based orientations,
= Confidence for confidence information (preferred unit: normalized)

measurement unit (e.g., meters)

information about the acquisition system
manufacturer of the system

model name of the system

settings of the acquisition system

amount of hardware/system lag that has been implicitly
compensated for in the stream's time stamps (in seconds)

information about the physical setup (e.g. room layout)
name of the setup

bounding box of the space/room (in the same coordinate system as all others)
=mallest possible position 1n the operating volume (for each axis)

largest possible position in the operating wvolume (for each axis)

The “X” in XDF

No single lab can specify meta-data across full range of
relevant data modalities (EEG, fMRI, MoCap, Gaze,
Video, ...)

No time to wait for a working group to form and come
up with a major consensus on a specification

Extensible part of the XDF specification is hosted on
the web, is grown incrementally by reviewed/invited
contributions with very low friction (wiki)

Private/vendor-specific extensions are permitted in
parallel (given some care with naming)

Can still be summarized into revisions of a more
traditional paper standard

Attuned Container Format

 ANSI standard based on XDF 1.0, aimed at
industry use (ANSI/CTA-2060-2017)

ANSI/CTA Standard

. Standard for Consumer EEG File Format
y (Attuned Container Format)

A ANSI/CTA-2060

Co-developed in 2017 by Intheon, Wearable
Sensing, InteraXon, ARL, and others

4 The LSL Ecosystem

Places to Go
(to Learn More, Get Help, ...)

GitHub Home Page of LSL

O scen/flabstreaminglayer: Multi-m: X +

&«

c

& GitHub, Inc. [US] | https://github.com/scen/labstreaminglayer [

[EE README.md ra

Summary

The lab streaming layer (LSL) is a system for the unified collection of measurement time series in research experiments that
handles both the networking, time-synchronization, (near-) real-time access as well as optionally the centralized collection,
viewing and disk recording of the data.

The LSL distribution consists of:

¢ The core transport library (liblsl) and its language interfaces (C, C++, Python, Java, C¥#, MATLAB). The library is general-
purpose and cross-platform (Win/Linux/MacOS, 32/64) and forms the heart of the project.

¢ A suite of tools built on top of the library, including a recording program, online viewers, importers, and apps that make
data from a range of acquisition hardware available on the lab network (for example audio, EEG, or motion capture).

There is an intro lecture/demo on LSL here: http://www.youtube.com/watch?v=Y1at7yrcFWO (part of an online course on EEG-
based brain-computer interfaces).

You may also wish to subscribe to the LSL mailing list

Hosted here is only the source code for the project. Developers will want to clone this repo, then run 'python get_deps.py' to
download all the 3rd party libraries from our ftp.

Download Binary Releases

You can find old releases on our FTP site: ftp://scen.ucsd.edu/pub/software/LSL/.

https://github.com/sccn/labstreaminglayer
https://github.com/labstreaminglayer

https://github.com/sccn/labstreaminglayer
https://github.com/sccn/labstreaminglayer

LSL Wiki (also on GitHub)

O ExampleCode.wiki - scenflabstrez X +
« > C & GitHub, Inc. [US] | https://github.com/scon/labstreaminglayer/wiki/ExampleCode.wiki

Network Troubleshooting section.

APl Documentation

It is recommended that you clone the repository to get the respective code (or check the SDK mirror
at SCCN). The documentation is at the following locations:

s C: C header file

e C++:C++ header file
s Python: pylsl module
* Java: JavaDocs

¢ C# LSL module

s MATLAB: class files.

e Other languages (R, Octave, Ruby, Lua, Perl, Go): SWIG interfaces (the C or C++ header file is the
APl reference).

The APl documentation covers all classes, functions and types and should hopefully leave no
questions unanswered. Note that a typical application will only need a small subset of the API (as
used in the example programs).

C Example Programs: Basic to Advanced

These two example programs illustrate the bread-and-butter use of LSL as it is executing in almost
any device module that comes with the distribution:

¢ Sending a multi-channel time series into LSL.

s Receiving a multi-channel time series from LSL.

These two example programs illustrate a more special-purpose use case, namely sending arbitrary
string-formatted data at irregular sampling rate. Such streams are used by programs that produce
event markers, for example:

SRS+ ¢

ImportingRecordingsinMatlab.
wiki

IViewNG.wiki

IViewX.wiki
Keyboard.wiki
KinectMocap.wiki
LabRecorder.wiki
MINDO.wiki

Mouse.wiki
NetworkConnectivity.wiki
Neuroscan.wiki
OptiTrack.wiki

OVAS.wiki
PhaseSpace.wiki
SerialPort.wiki
SupportedDevices.wiki
TimeSynchronization.wiki
Tobii.wiki

Tutorial

Tutorial 1: Getting started with
LSL (single stream)

Tutorial 2: Getting started with
LSL (multiple streams)

Tutorial 2b: Visualizing
multiple streams

O

LSL Mailing List & Slack Channel

[} The Lsl-L 2018 Archive by thread X +

<« C & httpsy//mailman.ucsd.edu/pipermail/lsl-I/201 8/thread.html h* g O 9

2018 Archives by thread

* Messages sorted by: [subject] [author] [date]
s More info on this list...

Starting: Thu Jan 4 07:43:08 PST 2018
Ending: Fri Sep 7 01:29:33 PDT 2018
Messages: 54

e [Lsl-L] Random access violation error while reading XML header Lee, Kyuflwa
o [Lsl-L] Re: Random access violation error while reading XML header Lee, KvuFHwa
= [Lsl-L] Re: Random access violation error while reading XMT header David Medine
= [Lsl-L] Re: Random access violation error while reading XML header Lee, KyuHwa
» [Lsl-1] 2nd International LSL Workshop (27.9-28 9 2018) - Save the Date Martin Bleichner
sl-L] Multiple network cards issue. Joamnis Zoulias
sl L] LSL clock vs. CPU system clock Luis Moris
o [Lsl-L]Re: LSL clock vs. CPU system clock David Medine
o [Lsl-L]Re: LST clock vs. CPU system clock David Medine
o [LslL]Re: LSL clock vs. CPU system clock Marthew Grivich
» [Lsl-L] Re: LSL clock vs. CPU system clock LZuis Moris
libls] and time to live Giso Grimm
o [Lsl-L] Re: liblel and tune to live Giso Grimm
sl-L] LabStreamer ready for beta testers Matthew Grivich
sl-L] Send Receive tests francesco zippo
o [Lsl-L] Re: Send Receive tests David Medine
o [Lsl-L] Re: SendReceive tests Ole Traupe
sl-L] device integration around L8 Sved Ahmar Shah
o [Lsl-L] Re: device integration around LSL Clement Lee
sl-L] Re: Hardware streaming app development - Time_Stamps in LSL/ XDF Matlab Kevin Novak
o [Lsl-L] Re: Hardware streaming app development - Time_Stamps in LSL/ XDF Matlab Clement Lee
n [Lsl-1] Re: Hardware streaming app development - Time_Stampe in L SL XDF Matlab Kevin Novak
= [Lsl-L] Re: Hardware streaming app development - Time_ Stamps in LSL XDF Matlab Clement Lee
Re: Hardware streaming app development - Time_Stamps in LSL/XDF Matlab Chadwick Boulay
o [Lsl-L] Unsubseribe Arnaud Delorme
sl-L] Invalid xdf file Leonhard Waschke
o [Lsl-L] Re: Invalid xdf file David Medine
sl-T] wireless streaming with LSL? David Medine
o [Lsl-L] Re: wireless streamng with LSLY Meartin Bleichner
» [Lsl-L] Re: wireless streaming with LSL? David Medine
o [Lsl-L] Re: wireless streaming with LSL? Marthew
n [Lsl-L] Re: wireless streaming with LSL? Marthew Grivich
= [Lsl-L] Re: wireless streaming with LSL? Marius Klug
sl-L] Simulink Luis Moris
Lsl-1] "Brain Products LabRecorder-1.14" Ole Traupe
o [Lsl-L] Re: "Brain Products LabRecorder-1.14" David Medine
m [Tl T1Re "Brain Deadnete T 2hR peler 1 14" Temime £,

.
=

.
=]

=

.
=

sl-

—

.
=}

.
=}
Ly

.
=}

.
=

)

sl-

.
=}

.
=

.
=}

.
=}

.
=

GitHub Issues (Bug Tracker)

O Issues - scen/labstreaminglayer X +

Jo)
s
C
@

&« (&) @ GitHub, Inc. [US] | https://github.com/scen/labstreamingla

Pull requests Issues Marketplace Explore

Hscen/ Iabstreaminglayer ®© Unwatch~ = 41 W Unstar = 226 ¥ Fork 131
Code Q@ Issues 132 Pull requests 8 Projects 3 Wiki Insights Settings
Label issues and pull requests for new contributors Dismiss

Now, GitHub will help potential first-time contributors discover issues

abetec it AN o NI

Go to Labels
Filters ~ is:issue is:open Labels Milestones New issue

@ 132 Open + 128 Closed Author = Labels ~ Projects = Milestones ~ Assignee « Sort -

® How to change output dimension of inlet.pull_sample() G55
#347 opened 2 days ago by CysTyr

® Loading Library in Matlab on Mac
#346 opened 12 days ago by jamesce

® Deslys EMG a1
#345 opened 15 days ago by sethhiggins

© Optitrack empty .xdf file and no output in viewing stream 1

340 opened 27 days ago by rreyes114

@ sometimes no clock offsets get recorded gy

#338 opened on Aug 24 by dmedine

LSL Support from Industry

s

BRAIN PRODUCTS
BrainTrain

rophysiological re

i

HIEUE0 _AACognionics
@.' 1= Nl neurc
Nneuro

. f g technology
behavioral

DF’ENBGI
R @ iIntheon

EMOTIV
@ InteraXon WEARABLE

Sensing

*Incomplete List

Places to Meet (Hack Devices,
Socialize, etc)

IEEE SMIC

IEEE SMC Budapest Hackathon 2016
@ IEEE SMC Hackathons San Diego 2016, Budapest 2016, Banff 2017, Miyazaki 2018

Workshops in San Diego

EEGLAB 2018 EEGLab Home & Hands-on Lab Streaming La...

HANDS-ON
LAB STREAMING LAYER (LSL) WORKSHOP 2018

Thursday November 8, 2018
- 3:30pm

A first Hands-on Lab Streaming Layer Workshop, hosted by the Swartz Center for Computational Neuroscience at the
University of California San Diego (UCSD), will take place on Thursday, November 8, 2018 from 10 am to 3:30pm following
Society for Neuroscience meeting in San Diego (November 3-7) and preceding the 23rd EEGLAB Workshop (November 8-
12). Participants will be expected to bring laptops with Matlab installed so as to be able to participate in the practical
sessions. The tutorial workshop will introduce and demonstrate the use of the Lab Streaming Layer (LSL) software
environment, the associated Extensible data Format (XDF), as well as the LSL applications programming interface (api) and
associated Neuropipe data recording and visualization and MoBILAB data review and analysis software. The format will be
a lecture by principal LSL developer Christian Kothe followed by live hands-on applications demonstrations and api
programming sessions. An on-site lunch and concluding tea will enhance opportunities for social networking among LSL
users and code developers.

EECI ah

Registration will be $40 for registrants only attending the LSL Workshop and $20 for registrants also attending the

Nov 8t 2018 at UCSD

Workshops in Germany

Enjoy the workshop! ©

Next: Q&A until 3pm

