-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpac_vis_eventRelatedPac.m
82 lines (69 loc) · 3.19 KB
/
pac_vis_eventRelatedPac.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
% pac_vis_eventRelatedPac: Plots time-series of mean high-frequency
% amplitude and low-frequncy phase.
%
% Usage:
% >> pac_vis_eventRelatedPac(EEG);
% Author: Makoto Miyakoshi. Cincinnati Children's Hospital
% Henrico Stam. Erasmus University
%
% History
% 08/14/2024 Makoto and Henrico. Created.
% Copyright (C) 2024, Makoto Miyakoshi, Henrico Stam.
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
function pac_vis_eventRelatedPac(EEG)
% Check if the precalculated data exist.
if ~isfield(EEG, 'pac')
warndlg('Event-related PAC not calculated.')
return
elseif ~isfield(EEG.pac, 'windowMeanAmp')
warndlg('Event-related PAC not calculated.')
return
end
% Launch user input dialogue window.
prompt = {'Enter the channel index [n]'};
dlgtitle = 'Event-related PAC visualizer';
dims = [1 30]; % The size of the input field (rows, columns)
defaultInput = {'1'}; % Default input values
chanIdxCell = inputdlg(prompt, dlgtitle, dims, defaultInput);
% Obtain the data.
chIdx = str2double(chanIdxCell{1});
meanAmp = EEG.pac.windowMeanAmp( chIdx,:);
meanPhase = EEG.pac.windowMeanPhase(chIdx,:);
stdAmp = EEG.pac.windowStdAmp( chIdx,:);
stdPhase = EEG.pac.windowStdPhase(chIdx,:);
ampEnvUpper = meanAmp+stdAmp;
ampEnvLower = meanAmp-stdAmp;
phaseEnvUpper = meanPhase+stdPhase;
phaseEnvLower = meanPhase-stdPhase;
plotTimeLength = size(meanAmp,2);
plotTime = 1000/EEG.srate*(1:plotTimeLength);
plotTime = plotTime-plotTime(length(plotTime)/2);
figure('NumberTitle','off', 'Name', 'pac_vis_eventRelatedPac', 'Color', [0.93 0.96 1])
yyaxis left
fill([plotTime plotTime(end:-1:1)], [phaseEnvUpper phaseEnvLower(end:-1:1)], [0 0 1], 'lineStyle', 'none', 'FaceAlpha', 0.1)
hold on
phaseLineHandle = plot(plotTime, meanPhase, 'b', 'linestyle', '-', 'linewidth', 2);
xlabel('Latency (ms)')
ylabel('Phase (radians)')
set(gca, 'ytick', [-pi 0 pi], 'YTickLabel', {'-pi' '0' 'pi'})
yyaxis right
hold on
fill([plotTime plotTime(end:-1:1)], [ampEnvUpper ampEnvLower(end:-1:1)], [1 0 0], 'lineStyle', 'none', 'FaceAlpha', 0.1)
ampLineHandle = plot(plotTime, meanAmp, 'r', 'linestyle', '-', 'linewidth', 2);
ylabel('Amplitude (\muV)')
line([0 0], ylim, 'color', [0 0 0], 'linestyle', ':')
legend([phaseLineHandle ampLineHandle], {sprintf('Phase+/-1SD (%.1f-%.1fHz)', EEG.pac.lfoPhase(1), EEG.pac.lfoPhase(2)) sprintf('Amp+/-1SD (%.1f-%.1fHz)', EEG.pac.hfoAmp(1), EEG.pac.hfoAmp(2))}, 'location', 'best')
title(sprintf('Ch %d, %d trials, MI=%.2f, p=%.3f (FDR)', chIdx, size(EEG.pac.winEdgesAfterRejection,1), EEG.pac.mi(chIdx), EEG.pac.FDR.MIpval(chIdx)))