-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathglm_bernoulli_rhs.stan
53 lines (41 loc) · 1.26 KB
/
glm_bernoulli_rhs.stan
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
data {
int<lower=0> n; // number of observations
int<lower=0> d; // number of predictors
int<lower=0,upper=1> y[n]; // outputs
matrix[n,d] x; // inputs
real<lower=0> scale_icept; // prior std for the intercept
real<lower=0> scale_global; // scale for the half-t prior for tau
real<lower=0> slab_scale;
real<lower=0> slab_df;
}
parameters {
real beta0; // intercept
vector[d] z; // auxiliary parameter
real<lower=0> tau; // global shrinkage parameter
vector<lower=0>[d] lambda; // local shrinkage parameter
real<lower=0> caux; // auxiliary
}
transformed parameters {
real<lower=0> c;
vector[d] beta; // regression coefficients
vector[n] f; // latent values
vector<lower=0>[d] lambda_tilde;
c = slab_scale * sqrt(caux);
lambda_tilde = sqrt( c^2 * square(lambda) ./ (c^2 + tau^2* square(lambda)) );
beta = z .* lambda_tilde*tau;
f = beta0 + x*beta;
}
model {
z ~ normal(0,1);
lambda ~ cauchy(0,1);
tau ~ cauchy(0, scale_global);
caux ~ inv_gamma(0.5*slab_df, 0.5*slab_df);
beta0 ~ normal(0,scale_icept);
y ~ bernoulli_logit(f);
}
generated quantities {
// compute log-likelihoods for loo
vector[n] loglik;
for (i in 1:n)
loglik[i] = bernoulli_logit_lpmf(y[i] | f[i]);
}