Skip to content

Commit 3e0fdc9

Browse files
committed
Generate the Series
1 parent 678a996 commit 3e0fdc9

11 files changed

+28
-62
lines changed

Diff for: InterviewPrograms/src/com/java/series/ArithmeticProgression.java

+1-1
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,7 @@
44

55
/*
66
* Arithmetic Progression
7-
*
7+
* -----------------------
88
* In mathematics, an arithmetic progression (AP)
99
* or arithmetic sequence is a sequence of
1010
* numbers such that the difference between the

Diff for: InterviewPrograms/src/com/java/series/EvenNumberSeries.java

+2-2
Original file line numberDiff line numberDiff line change
@@ -3,8 +3,8 @@
33
import java.util.Scanner;
44

55
/*
6-
* Print the EVEN number series
7-
*
6+
* EVEN Number Series
7+
* ------------------
88
* 0 2 4 6 8 10 12 14 ....
99
*
1010
* In the for loop, either use i++, check i is even and print

Diff for: InterviewPrograms/src/com/java/series/GeometricProgression.java

+2-1
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,7 @@
44

55
/*
66
* Geometric Progression
7-
*
7+
* ---------------------
88
* In mathematics, a geometric progression, also known
99
* as a geometric sequence, is a sequence of numbers
1010
* where each term after the first is found by multiplying
@@ -32,6 +32,7 @@
3232
* 9 = 256 * 2 = 512
3333
* 10 = 512 * 2 = 1024
3434
*/
35+
3536
public class GeometricProgression {
3637
public static void main(String[] args) {
3738
Scanner scanner = new Scanner(System.in);

Diff for: InterviewPrograms/src/com/java/series/OddNumberSeries.java

+3-2
Original file line numberDiff line numberDiff line change
@@ -3,14 +3,15 @@
33
import java.util.Scanner;
44

55
/*
6-
* Print the ODD number series
7-
*
6+
* ODD Number Series
7+
* ------------------
88
* 1 3 5 7 9 11 13 15 17 19 .....
99
*
1010
* In the for loop, either use i++, check i is odd and print
1111
* Else in the for loop use i+=2 then print i value
1212
* i starts with value 1
1313
*/
14+
1415
public class OddNumberSeries {
1516
public static void main(String[] args) {
1617
Scanner scanner = new Scanner(System.in);

Diff for: InterviewPrograms/src/com/java/series/PatternSeries.java

+2-1
Original file line numberDiff line numberDiff line change
@@ -11,6 +11,7 @@
1111
* and append 3 for every iteration
1212
*
1313
*/
14+
1415
public class PatternSeries {
1516
public static void main(String[] args) {
1617
Scanner scanner = new Scanner(System.in);
@@ -45,5 +46,5 @@ public static void main(String[] args) {
4546
Enter the N value for the series : 10
4647
3 33 333 3333 33333 333333 3333333 33333333 333333333 -961633963
4748
Using String approach:
48-
3 33 333 3333 33333 333333 3333333 33333333 333333333 -961633963
49+
3 33 333 3333 33333 333333 3333333 33333333 333333333 3333333333
4950
*/

Diff for: InterviewPrograms/src/com/java/series/PrimeNumberSeries.java

+3-2
Original file line numberDiff line numberDiff line change
@@ -2,17 +2,18 @@
22

33
/*
44
* Prime Number Series
5-
*
5+
* --------------------
66
* 2, 3, 5, 7, 11, 13, 17, 19, 23, 29 ....
77
*
88
* Prime Number
9-
*
9+
* ------------
1010
* A prime number is a natural number greater than 1
1111
* that is not a product of two smaller natural numbers.
1212
*
1313
* A natural number thats divisible only by itself and 1.
1414
*
1515
*/
16+
1617
public class PrimeNumberSeries {
1718
public static void main(String[] args) {
1819
int n = 100;

Diff for: InterviewPrograms/src/com/java/series/QuadraticSequence.java

+10-1
Original file line numberDiff line numberDiff line change
@@ -2,7 +2,7 @@
22

33
/*
44
* Quadratic Sequence
5-
*
5+
* ------------------
66
* A quadratic sequence is a sequence of numbers
77
* in which the second difference between
88
* any two consecutive terms is constant.
@@ -24,6 +24,15 @@
2424
*
2525
* The Series is
2626
* 1, 2, 4, 7, 11, 16, 22
27+
*
28+
* for values i = 1 to n
29+
* 1 = ( (1 * (1-1) ) / 2) + 1 = 1
30+
* 2 = ( (2 * (2-1) ) / 2) + 1 = 2
31+
* 3 = ( (3 * (3-1) ) / 2) + 1 = 4
32+
* 4 = ( (4 * (4-1) ) / 2) + 1 = 7
33+
* 5 = ( (5 * (5-1) ) / 2) + 1 = 11
34+
* 6 = ( (6 * (6-1) ) / 2) + 1 = 16
35+
*
2736
*/
2837
public class QuadraticSequence {
2938
public static void main(String[] args) {

Diff for: InterviewPrograms/src/com/java/series/Series1.java

+2-1
Original file line numberDiff line numberDiff line change
@@ -3,7 +3,7 @@
33
/*
44
* Print the following Series
55
* 2 9 28 65 126 217 344
6-
*
6+
* -------------------------
77
* for i-th element
88
* (i^3)+1
99
*
@@ -16,6 +16,7 @@
1616
* i = 7 => 7^3+1 = 343 + 1 = 344
1717
*
1818
*/
19+
1920
public class Series1 {
2021
public static void main(String[] args) {
2122
int n = 10;

Diff for: InterviewPrograms/src/com/java/series/Series5.java

+1-1
Original file line numberDiff line numberDiff line change
@@ -5,7 +5,7 @@
55
/*
66
* Write Java program to generate the following Series
77
*
8-
* 1 2 3 7 11 16 22 29
8+
* 1 2 4 7 11 16 22 29
99
*
1010
* Solution is
1111
* i-th value = ( (i * (i-1) ) / 2) + 1

Diff for: InterviewPrograms/src/com/java/series/Series7.java

-50
This file was deleted.

Diff for: InterviewPrograms/src/com/java/series/TriangularSeries.java

+2
Original file line numberDiff line numberDiff line change
@@ -2,6 +2,7 @@
22

33
/*
44
* Triangular Number Series
5+
* ------------------------
56
*
67
* A triangular number or triangle number counts
78
* objects arranged in an Equilateral triangle
@@ -48,6 +49,7 @@
4849
* ith term = (i*(i+1)) / 2
4950
*
5051
*/
52+
5153
public class TriangularSeries {
5254
public static void main(String[] args) {
5355
int terms = 15;

0 commit comments

Comments
 (0)