-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathCMMC.armadillo.cpp
198 lines (183 loc) · 6.09 KB
/
CMMC.armadillo.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
#include <iostream>
#include <armadillo>
#include <chrono>
#include <vector>
#include <fstream>
#include <string>
#include <cmath>
#include <cstdlib>
using namespace std;
using namespace arma;
/*
This code is the c++ version of Coupled matrix matrix completion algorithm.
Armadillo(http://arma.sourceforge.net/) with OpenBLAS(https://www.openblas.net/) is needed to compile this code.
Complaing example:
g++ CMMC.cpp -o CMMC -std=c++11 -O3 -I/path/to/armadillo/<include>/ -I/path/to/openblas/<include>/ -L/path/to/openblas/openblas/<lib>/ -lopenblas
*/
vec generateOmegaAndV(mat &MXY, mat &Omega) {
/*
This function is to generate the Omega matrix and vector V.
Omega is a two column matrix contains the row and column IDs for each known values in the main matrix.
V is the vector contains all known values.
*/
sp_mat mxy = sp_mat(MXY);
vec ans(mxy.n_nonzero);
Omega = mat(mxy.n_nonzero,2);
typedef sp_mat::const_row_iterator iter;
int k = 0;
for (unsigned int i = 0; i < mxy.n_rows; i++) {
for (iter j = mxy.begin_row(i); j != mxy.end_row(i); ++j) {
ans.at(k++) = *j;
//cout << i << "," << j.col() << endl;
Omega((static_cast<__int64>(k)-1), 0) = int(i);
Omega((static_cast<__int64>(k)-1), 1) = int(j.col());
}
}
//cout << Omega.n_rows << "," << Omega.n_cols << endl;
return ans;
}
void initializeZ(mat Omega, int m, cube &Z, field<mat> &B) {
/*
This function is to initialize Z matrices.
Z matrices are position matrices that generated from Omega.
For each coupled matrix, there will be a corresponding Z matrix.
*/
int idx1, idy1 ,idx2, idy2;
for (int x = 0; x < m; ++x) {
for (int y = 0; y < m; ++y) {
idx1 = Omega(x, 0);
idy1 = Omega(y, 0);
idx2 = Omega(x, 1);
idy2 = Omega(y, 1);
Z(x, y, 0) = B(0, 0).at(idx1, idy1);
Z(x, y, 1) = B(1, 0).at(idx2, idy2);
}
}
}
void updateZslice(vec Omega, int &m, mat &Z, mat &B) {
/*
In the main loop, Z matrices need to be updated for every iteration.
This function is to update the Z matrices.
*/
int idx, idy;
for (int x = 0; x < m; ++x) {
for (int y = 0; y < m; ++y) {
idx = Omega(x);
idy = Omega(y);
Z(x, y) = B.at(idx,idy);
}
}
}
mat CoupledMatrixCompletion(mat &Omega, vec &v, field<mat> &C, int &iter_num) {
/*
This is the completion function.
*/
// declare variables
int m = Omega.n_rows;
int d = Omega.n_cols;
int x, y;
double dt;
field<mat> B(2,1);
cube Z(m, m, 2); // Z use cube
mat b,M,E;
mat Y(m,m);
mat X(m,m);
mat res; // final result matrix
vec n(C.n_rows);
Z.fill(0.0); // generate Z
//initialize B matrices, two B matrices will be initialized.
//these two matrices are used to generate the final result matirx.
for (int i = 0; i < 2; ++i) {
n(i) = C(i, 0).n_rows;
B(i, 0) = b.eye(n(i), n(i));
}
initializeZ(Omega,m,Z,B); // filling values into Z based on Omega
vec u = v;
//main loop
for (int l = 0; l < iter_num; ++l) { //main iteration, this is controled by the iter_num in main function
for (int i = 0; i < 2; ++i) { //two coupled matrices will be used in here, there is a calculation for each one
Y = Z.slice(!i); // select the corresponding Z matrix
// generate M, M is the temporary matrix used to update B matrices.
M.zeros(n(i), n(i));
for (int j = 0; j < m; ++j) {
for (int k = 0; k < m; ++k) {
x = Omega(j, i);
y = Omega(k, i);
M(x, y) = M(x, y) + u(j) * u(k) * Y(j,k);
}
}
// update B
B(i, 0) = C(i, 0) + B(i, 0) * M * B(i, 0);
dt = pow(rcond(B(i, 0)),(-1/n(i)));
B(i, 0) = dt * B(i, 0);
// update Z
updateZslice(Omega.col(i),m,Z.slice(i),B(i,0));
X = Y % Z.slice(i);
u = solve(X, v); // u is for final matrix
}
}
// generate final result
E.zeros(n(0),n(1));
for (int i = 0; i < m; ++i) {
E(Omega(i, 0), Omega(i, 1)) = u(i);
}
res = B(0, 0) * E * B(1,0);
return(res);
}
int main(int argc, char** argv)
{
chrono::steady_clock::time_point begin = chrono::steady_clock::now();
cout << "start" << endl;
//declare vars
// input files
char *cgm_file;
char *ggm_file;
char *ccm_file;
char *final_mat;
ggm_file=argv[1];
ccm_file=argv[2];
cgm_file=argv[3];
final_mat=argv[4];
// declare mat objects
mat MXX,MYY,MXY,Omega,W,D,I,MXY_hat;
int a,b,s;
// four hyperparameters
double xscale = 0.9;
double yscale = 0.9;
double xepsilon = 0.9;
double yepsilon = 0.9;
int iter_num = 1; // interation number
field<mat> C(2, 1); // declare a field var to hold two processed coupled matrices
// load data from text file
/*
text file in tsv format without header or rownames.
*/
MXX.load(ggm_file);
MYY.load(ccm_file);
MXY.load(cgm_file);
W = MXY;
a = MXX.n_rows;
b = MYY.n_rows;
s = Omega.n_rows;
// generate Omega and V
vec v = generateOmegaAndV(MXY, Omega);
// preprocess two coupled matrices with four hyperparameters
MXX = MXX * MXX;
D = diagmat(pow(diagmat(MXX),-0.5));
MXX = D * MXX * D;
MYY = MYY * MYY;
D = diagmat(pow(diagmat(MYY), -0.5));
MYY = D * MYY * D;
// use C to hold the processed coupled matrices
C(0, 0) = xscale * MXX + xepsilon * I.eye(a, a);
C(1, 0) = yscale * MYY + yepsilon * I.eye(b, b);
// do the calculation
MXY_hat = CoupledMatrixCompletion(Omega,v,C,iter_num);
// save result into text file
MXY_hat.save(final_mat,csv_ascii);
cout << "Done" << endl;
// print out the running time
chrono::steady_clock::time_point end = chrono::steady_clock::now();
cout << "Total elapsed time: " << chrono::duration_cast<chrono::seconds>(end - begin).count() << "[s]" << endl;
return 0;
}