-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
274 lines (190 loc) · 7.48 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
from flask import Flask,render_template,url_for,request
import pandas as pd
import pickle
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.externals import joblib
from flask_bootstrap import Bootstrap
from textblob import TextBlob,Word
import random
import time
from sklearn.linear_model import LogisticRegression
import itertools
#from vectorizer import vect
import numpy as np
from myproject import app,db
from flask import render_template, redirect, request, url_for, flash,abort
from flask_login import login_user,login_required,logout_user
from myproject.models import User,MovieReview,Sentimentclass,SpamMessages,SpamOrHam
from myproject.forms import LoginForm, RegistrationForm
from werkzeug.security import generate_password_hash, check_password_hash
import os
from forms import AddForm
@app.route('/')
def home():
return render_template('nlp.html')
@app.route('/welcome')
@login_required
def welcome_user():
return render_template('welcome_user.html')
@app.route('/logout')
@login_required
def logout():
logout_user()
flash('You logged out!')
return redirect(url_for('home'))
@app.route('/login', methods=['GET', 'POST'])
def login():
form = LoginForm()
if form.validate_on_submit():
# Grab the user from our User Models table
user = User.query.filter_by(email=form.email.data).first()
if user.check_password(form.password.data) and user is not None:
#Log in the user
login_user(user)
flash('Logged in successfully.')
# flask saves that URL as 'next'.
next = request.args.get('next')
# So let's now check if that next exists, otherwise we'll go to
# the welcome page.
if next == None or not next[0]=='/':
next = url_for('welcome_user')
return redirect(next)
return render_template('login.html', form=form)
@app.route('/register', methods=['GET', 'POST'])
def register():
form = RegistrationForm()
if form.validate_on_submit():
user = User(email=form.email.data,
username=form.username.data,
password=form.password.data)
db.session.add(user)
db.session.commit()
flash('Thanks for registering! Now you can login!')
return redirect(url_for('login'))
return render_template('register.html', form=form)
@app.route('/add_review',methods=['GET', 'POST'])
def add_review():
if request.method == 'POST':
#if request.method == 'POST':
movietextcolumn = request.form['movietextcolumn']
newreview = MovieReview(movietextcolumn)
db.session.add(newreview)
db.session.commit()
#NLP Stuff
return redirect(url_for('classify'))
return render_template('base.html')
@app.route('/classify')
def classify():
lastreview = MovieReview.query.order_by(MovieReview.id.desc()).first()
blob = TextBlob(str(lastreview))
received_text3 = blob
blob_sentiment,blob_subjectivity = blob.sentiment.polarity ,blob.sentiment.subjectivity
#wordreview = ['negative','positive']
#blob_sentiment = int(blob_sentiment1)
#blob_review = wordreview[blob_sentiment[0]]
if blob_sentiment >= 0.1:
blob_sentiment = 'positive'
elif blob_sentiment <= -0.1:
blob_sentiment = 'negative'
else:
blob_sentiment = 'neutral'
#print (blob_sentiment)
sentimentcolumn = Sentimentclass(blob_sentiment)
db.session.add(sentimentcolumn)
db.session.commit()
return redirect(url_for('list_review'))
@app.route('/list_review')
def list_review():
# Grab a list of puppies from database.
sentiments = Sentimentclass.query.all()
moviereviews = MovieReview.query.all()
#review_post = MovieReview.query.get_or_404(MovieReview.id)
return render_template('result2.html', sentiments=sentiments,moviereviews=moviereviews)
@app.route('/analyse',methods=['POST'])
def analyse():
start = time.time()
if request.method == 'POST':
rawtext = request.form['rawtext']
#NLP Stuff
blob = TextBlob(rawtext)
received_text2 = blob
blob_sentiment,blob_subjectivity = blob.sentiment.polarity ,blob.sentiment.subjectivity
#wordreview = ['negative','positive']
#blob_sentiment = int(blob_sentiment1)
#blob_review = wordreview[blob_sentiment[0]]
number_of_tokens = len(list(blob.words))
# Extracting Main Points
nouns = list()
for word, tag in blob.tags:
if tag == 'NN':
nouns.append(word.lemmatize())
len_of_words = len(nouns)
rand_words = random.sample(nouns,len(nouns))
final_word = list()
for item in rand_words:
word = Word(item).pluralize()
final_word.append(word)
summary = final_word
end = time.time()
final_time = end-start
return render_template('nlp.html',received_text = received_text2,
number_of_tokens=number_of_tokens,blob_sentiment=blob_sentiment,
blob_subjectivity=blob_subjectivity,summary=summary,final_time=final_time)
@app.route('/spam_detection')
def spam_detection():
return render_template('spam_detection.html')
@app.route('/sentiments')
def sentiments():
return render_template('sentiments.html')
@app.route('/spam_message_dir',methods=['GET','POST'])
def spam_message_dir():
if request.method == 'POST':
spam_messages_column = request.form['spam_messages_column']
new_spam = SpamMessages(spam_messages_column)
db.session.add(new_spam)
db.session.commit()
return redirect(url_for('predict'))
return render_template('base.html')
@app.route('/predict')
def predict():
df= pd.read_csv('YoutubeSpamMergedData.csv')
df_data = df[["CONTENT","CLASS"]]
# Features and Labels
df_x = df_data['CONTENT']
df_y = df_data['CLASS']
# Extract Feature With CountVectorizer
corpus = df_x #collection of texts
cv = CountVectorizer() #counts the number of words
X = cv.fit_transform(corpus) # Fit the Data by applying mean and standard deviation (data - mean)/standard deviation
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, df_y, test_size=0.33, random_state=42)
#Naive Bayes Classifier
from sklearn.naive_bayes import MultinomialNB
clf = MultinomialNB()
clf.fit(X_train,y_train)
clf.score(X_test,y_test) #R-squared value for the predictions
#Alternative Usage of Saved Model
# ytb_model = open("naivebayes_spam_model.pkl","rb")
# clf = joblib.load(ytb_model)
spam_messages_column2 = SpamMessages.query.order_by(SpamMessages.id.desc()).first()
data = [str(spam_messages_column2)]
vect = cv.transform(data).toarray()
my_prediction = clf.predict(vect)
#return render_template('result.html',my_prediction = my_prediction)
if my_prediction == 1:
my_prediction = 'Spam'
elif my_prediction == 0:
my_prediction = 'Not a Spam'
spamham_column = SpamOrHam(my_prediction)
db.session.add(spamham_column)
db.session.commit()
return redirect(url_for('list_spam'))
@app.route('/list_spam')
def list_spam():
# Grab a list of puppies from database.
spam_messages = SpamMessages.query.all()
spamham = SpamOrHam.query.all()
return render_template('result.html',spam_messages = spam_messages,spamham = spamham)
if __name__ == '__main__':
app.run(debug=True)