-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
263 lines (204 loc) · 9.52 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
import os
import sys
import time
import socket
import json
import cv2
import logging as log
import paho.mqtt.client as mqtt
import numpy as np
from random import randint
from argparse import ArgumentParser
from inference import Network
# MQTT server environment variables
HOSTNAME = socket.gethostname()
IPADDRESS = socket.gethostbyname(HOSTNAME)
MQTT_HOST = IPADDRESS
MQTT_PORT = 3001
MQTT_KEEPALIVE_INTERVAL = 60
# Classification labels used by the model in the exact order
classes = ["Unknown", "person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat", "traffic light", "fire hydrant","street sign", "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow", "elephant", "bear", "zebra", "giraffe", "hat", "backpack", "umbrella", "shoe", "eye glasses", "handbag", "tie", "suitcase", "frisbee", "skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard", "tennis racket", "bottle", "plate", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple", "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "couch", "potted plant", "bed", "mirror", "dining table", "window", "desk", "toilet", "door", "tv", "laptop", "mouse", "remote", "keyboard", "cell phone", "microwave", "oven", "toaster", "sink", "refrigerator", "blender", "book", "clock", "vase", "scissors", "teddy bear", "hair drier", "toothbrush", "hair brush"]
def build_argparser():
"""
Parse command line arguments.
:return: command line arguments
"""
parser = ArgumentParser()
parser.add_argument("-m", "--model", required=True, type=str,
help="Path to an xml file with a trained model.")
parser.add_argument("-i", "--input", required=True, type=str,
help="Path to image or video file")
parser.add_argument("-l", "--cpu_extension", required=False, type=str,
default=None,
help="MKLDNN (CPU)-targeted custom layers."
"Absolute path to a shared library with the"
"kernels impl.")
parser.add_argument("-d", "--device", type=str, default="CPU",
help="Specify the target device to infer on: "
"CPU, GPU, FPGA or MYRIAD is acceptable. Sample "
"will look for a suitable plugin for device "
"specified (CPU by default)")
parser.add_argument("-pt", "--prob_threshold", type=float, default=0.5,
help="Probability threshold for detections filtering"
"(0.5 by default)")
return parser
def connect_mqtt():
### TODO: Connect to the MQTT client ###
client = mqtt.Client()
client.connect(MQTT_HOST,MQTT_PORT, MQTT_KEEPALIVE_INTERVAL)
return client
def draw_boxes(frame, result, prob_threshold, width, height):
"""
Draw bounding boxes to the frame
Params
frame: frame from camera/video
result: list contains the result of inference
return
frame: frame with bounding box drawn on it
"""
start_point = None
end_point = None
thickness = 5
color = (255, 86, 0)
for box in result[0][0]:
if box[2] > prob_threshold:
start_point = (int(box[3] * width), int(box[4] * height))
end_point = (int(box[5] * width), int(box[6] * height))
frame = cv2.rectangle(frame, start_point, end_point, color, thickness)
box_label = '{}: {:.2f}%'.format(classes[int(box[1])], box[2] * 100)
frame = cv2.putText(frame, box_label , (int(box[3] * width)+ 5, int(box[4] * height) - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 86, 0), 2)
return frame
def person_count_per_frame(result, args):
"""
Counts number of people in a frame
params
result: list contains the result of inference
return
count: count of number of people in a frame
"""
count = 0
for box in result[0][0]:
confidence = box[2]
prob_threshold = args.prob_threshold
if confidence > prob_threshold:
count += 1
return count
def infer_on_stream(args, client):
"""
Initialize the inference network, stream video to network,
and output stats and video.
params
args: Command line arguments parsed by `build_argparser()`
client: MQTT client
:return: None
"""
# Initialise the class
infer_network = Network()
# Set Probability threshold for detections
prob_threshold = args.prob_threshold
infer_network.load_model(args.model, args.device, args.cpu_extension)
network_input_shape = infer_network.get_input_shape()
single_image_mode = False
image_extensions = ['.jpg','.bmp','.dpx', '.png', '.gif', '.webp', '.tiff', '.psd', '.raw', '.heif', '.indd']
video_extensions = ['.mp4','.webm', '.mpg', '.mp2', '.mpeg', '.mpe', '.mpv', '.ogg', '.m4p', '.m4v', '.avi', '.wmv', '.mov', '.qt', '.flv', '.swf', '.avchd']
# Check if the input is from webcam, an image, or a video
if args.input == 'CAM':
args.input = 0
elif os.path.splitext(args.input)[1].lower() in video_extensions:
output_file = 'output_video{}'.format(os.path.splitext(args.input)[1].lower())
single_image_mode = False
elif os.path.splitext(args.input)[1].lower() in image_extensions:
output_file = "output_image{}".format(os.path.splitext(args.input)[1].lower())
single_image_mode = True
else:
log.error(" [preprocessing block] File is not a video or an image in rasta format")
log.error(" [preprocessing block] Please input an image in rasta format or video")
exit(1)
# Get and open video capture
captured = cv2.VideoCapture(args.input)
captured.open(args.input)
#Get shape actual of input
width = int(captured.get(3))
height = int(captured.get(4))
input_shape = network_input_shape['image_tensor']
# Creates an output video if input file is a video
if single_image_mode:
output_video = None
else:
path = 'outputs/videos/'
output_video = cv2.VideoWriter(os.path.join(path , output_file), 0x00000021, 30, (width,height))
report_count = 0
count = 0
prev_count = 0
prev_duration = 0
total_count = 0
duration = 0
while captured.isOpened():
flag, frame = captured.read()
if not flag:
break
key_pressed = cv2.waitKey(60)
p_frame = cv2.resize(frame, (input_shape[3], input_shape[2]))
p_frame = p_frame.transpose((2,0,1))
p_frame = p_frame.reshape(1, *p_frame.shape)
network_input = {'image_tensor': p_frame, 'image_info': p_frame.shape[1:]}
report_duration = None
infer_start = time.time()
infer_network.exec_net(request_id = 0, network_input = network_input)
if infer_network.wait() == 0:
person_count = 0
infer_time_diff = time.time() - infer_start
output = infer_network.get_output()
bounded_frame = draw_boxes(frame, output, prob_threshold, width, height)
infer_time_text = "Inference time: {:.3f}ms".format(infer_time_diff * 1000)
bounded_frame = cv2.putText(bounded_frame, infer_time_text, (15,15), cv2.FONT_HERSHEY_COMPLEX,0.45, (255, 86, 0), 1)
person_count = person_count_per_frame(output,args)
if person_count != count:
prev_count = count
count = person_count
if duration >= 3:
prev_duration = duration
duration = 0
else:
duration += prev_duration
prev_duration = 0 #unknown, not needed
else:
duration += 1
if duration >= 3:
report_count = count
if duration == 3 and count > prev_count:
total_count += count - prev_count
elif duration == 3 and count < prev_count:
report_duration = int((prev_duration/10.0) * 1000)
client.publish("person", json.dumps({"count" : report_count, "total" : total_count}), qos = 0, retain = False)
if report_duration is not None:
client.publish("person/duration", json.dumps({"duration" : report_duration}), qos = 0, retain = False)
bounded_frame = cv2.resize(bounded_frame, (width, height))
sys.stdout.buffer.write(bounded_frame)
sys.stdout.flush()
if single_image_mode:
path = 'outputs/images/'
cv2.imwrite(os.path.join(path , output_file ), bounded_frame)
else:
output_video.write(bounded_frame)
# Break if esc key is pressed
if key_pressed == 27:
break
# Release all captured frames and destroy any openCVwindows
captured.release()
cv2.destroyAllWindows()
#Disconnect from MQTT
client.disconnect()
def main():
"""
Load the network and parse the output.
:return: None
"""
# Grab command line args
args = build_argparser().parse_args()
# Connect to the MQTT server
client = connect_mqtt()
# Perform inference on the input stream
infer_on_stream(args, client)
if __name__ == '__main__':
main()